
                                                                                                                                    

Determination of basis for the irreducible representations of the unitary 
group for U(p + q)!U(p) ® U(q) 
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A direct procedure is outlined for determining the basis spanning finite dimensional irreducible 
representations ofU( p + q) adapted to the subgroup U( p) ® U(q). Using a tableau based analysis, 
it is shown that the realization of the semi maximal states follows readily from a knowledge of the 
matrix elements of the generators Eii + I ofU(p), U(q)CU(p + q). 

P ACS numbers: 02.20. - a 

I. INTRODUCTION 

The use of the canonical basis spanning finite dimen­
sional irreducible representations (irreps) of the unitary 
group has been well established in the study of many-body 
problems. Based on extensive studies by Moshinsky, I Baird 
and Biedenharn,2 and others,3,4 considerable notational and 
other simplifications have been developed5,6leading to large 
scale studies of many-particle systems using computers. 7

,H 

In many applications, however, it is necessary to choose 
a noncanonical basis for the unitary group U( p + q) adapted 
to the subgroup U( p) ® U(q). The usefulness of such a basis 
has been discussed in recent years by a number of work­
ers.'i-II Details of the realization of such a basis using lower­
ing operators which are polynomials of the generators of the 
unitary group was considered recently by Mickelsson.9 

Though rules have been given for the construction of these 
operators, their explicit realization and actual construction 
of the required basis using them is not easy. 

Alternatively, the S-function method of Littlewood, 12 
as elaborated by Wybourne, Ll could also be used to generate 
the basis adapted to the restriction U(p + q)! U(p) ® U(q). In 
this approach there exist simple tableau based rules for ob­
taining the irreps ofU(p) ® U(q), which occur in the above 
restriction. A determination of the required basis states 
spanning a given product representation of the subgroup is, 
however, not quite straightforward. 

In the present paper we have used the tableau method to 
obtain the subduction series occurring in the restriction of 
the group to the subgroup U( p) ® U(q). The series is obtained 
as was done by Wybourne13 and Robinson, 14 by reducing the 
skew representation [A] - [,u], where [A] is an irrep of 
U(p + q) and [,u] is an irrep ofU(q) contained entirely with­
in [A ] and realized using a tensor product of the first p orbi­
tals of the fundamental representation of the group. For each 
of the product irreps occuring in the subduction series the 
semi maximal states have been determined. The semimaxi­
mality condition9 has been used to determine the subgroup 
adapted basis in terms of the set spanning [A]. Knowing the 
matrix elements of the generators ofU( p) and U(q), this basis 
set has been determined to within a normalization factor and 
ambiguity due to the multiplicity of occurrence of [v] in 
[A] - [,u]. 

The procedure has been outlined in Sec. 2 and a brief 
discussion presented in Sec. 3. 

2. THE RESTRICTION U(p +q)!U(p) ® U(q) 

Consider an ordered set of orthonormal single particle 
basis orbitals! ¢Ji Ii = 1,2, ... , p, p + 1, ... , P + q j spanning the 
fundamental representation space Vp + q of the unitary group 
U(p + q), Let 

[11 ]-[AI,A2, ... ,Ap+q].AI>A2> ... >Ap+q>0, (1) 
p+q 
IAi=N, 
i= 1 

be an irrep occurring in the reduction of the tensor basis 
spanning Vp + q ® N, where N is the number of particles. The 
basis spanning Vp + q ® N may be represented as a tensor of 
rank N in terms of single particle orbital occupancies, as 

(N N N )-A. N,A. N, A. Np , q 
I' 2'"'' p+q='I'1'I'2''''I'p+q' 

where 
p+q 
I Ni = N, N I ,N2,· .. ,Np + q >0. 

i+ 1 

(2) 

(3) 

Using nonstandard Wigner operators of the permutation 
group SN it is quite straightforward to generate a canonical 
basis spanning the irrep [A] using the reducible basis ofEq, 
(2) and the detailed procedures outlined in an earlier note. 15 
As was shown in that note l5 such a basis transforms as the 
canonical Gel'fand or Weyl basis under the action of the 
generators !Eijli,j= 1,2, ... ,p,p+ 1, ... ,p+qj ofU(p+q). 
Using the Weyl tableau to represent the basis, we observe 
that the first p indices define a standard subtableau structure 
of A corresponding to a [,u] ofU(p) obtained in the reduction 
of Vp ® N', where 

N' +N" =N, fNi =N', 
p+q 
I Ni=N". (4) 

i+ I i=p+ I 

In terms of the branching rules for U( p + q), 16 this essential­
ly means that if we delete N" boxes successively from the 
given Weyl tableau for [A] such that no two of the Np + I or 
Np + 2 or ... Np + q boxes share a column, the residue still de­
fines a standard Weyl tableau for the irrep [,u] ofU(p). The 
deleted portion [A] - [,u], which is a "skew tableau" in the 
sense defined by Robinson, 14 forms a reducible representa­
tion for the subgroup U(q), whose fundamental representa­
tion space is spanned by thge last q orbitals. Given a [A ] of 
U(p + q) and [,u] ofU(p), contained entirely within it, the 
rules obtaining the possible irreps of U( p) ® \J(q) occurring 
in the reduction of[,u] ®([A] - [,u]) can be stated as l3 
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(i) replace the Young tableau box structure for [A ] by corre­
sponding dots; (ii) leaving the subtableau structure corre­
sponding to a given [fl] unaltered. fill the residual portion of 
(i) with a set of a's in all possible ways so that no two of them 
share a column in the tableau; (iii) assign sets of b ·s. c·s. etc .• 
as in (ii). ensuring at each stage that the letters a. b. c. etc .• 
define a lattice permutation read from left to right along each 
row taken from top to bottom. 

Exhausting the skew portion of the tableau [A ] - [fl] as 
above. we obtain a set of [A ] ! [ fl] ® [v] by arranging the set of 
a's. b 'so etc .• as defining the rows of tableaus for irreps of 
U(q). As an illustration. consider 
[4.3,2]![2.1] ® ([4.3,2] - [2.1]) ofU(3) ® U(3)CU(6). Using 
the rules above. we readily obtain 

[4,3,2]1 .• (: ') 

a a a a a a 

ab + ab + ab 

a b a c b b 

a a a a a a 

+. a b 

b c 

+ b b 

a c 

+ b b 
c c 

so that we obtain the possible representations subduced from 
[4.3.2] as 

[4.3.2]![2.1] ®([4.3.2]- [2.1], 
= [2.1] ® ([4.2] + [4.12] + W] 

+ 2 [3.2.1] + [23
]). 

Thus. given a fixed [A ] ofU( p + q) and a fixed [fl] ofU( p) 
contained entirely in [A ]. it is easy to obtain the subduction 
series 

(5) 

[A. ]![fl] ® ([A] - [fl]) = IrAl"v [fl] X [v], (6) 
[vi 

where r A I'V is the multiplicity of occurrence of [v] in 
[A] - [fl]. 

For convenience. we will assume that the irreps [v] on 
the right side of Eq. (6) are ordered such that for i < i. the 
irrep [v (il] has a greater row symmetry in the corresponding 
tableau than [v Ul]. In terms of the partitions defining the 
irreps this implies that the first nonzero difference 
[vtl - V I

UI.v2(i1 - V2VI ••.• ] is positive where the suffixes 
define the partitions of the irreps in the usual sense [cr.. 
Eq. (I)]. 

Let us now consider the procedure for generating the 
basis states spanning the product representations subduced 
as in Eq. (6). Let I fl;l) and Iv;k ) be the canonical Weyl basis 
spanning the irreps ofU( p) and U(q) occurring in the restric­
tion [A ]![fl] ® [v] ofU(p + q). Corresponding to a particu­
lar [A ]![fl] ® [v] occurring in the reduction of 

1236 J. Math. Phys., Vol. 23, No.7, July 1982 

[fl] ® ([A] - [fl]) defined by Eq. (6). we observe that the basis 
states for the subduction can be expressed as 

[A]! I fl;l) Iv;k1') = I (Ail fll:vk1') IA;i). (7) 

where IA;i) are the canonical Weyl bases spanning the irrep 
[A ] of U( p + q) and the subduction coefficients can be cho­
sen to be elements of a real orthogonal matrix satisfying 16 

I(Ailfll;vkr) (fll';vk'1"IAi) =81/.8'k,8", (8) 
j 

and 

I(A 'j' I fll;vk1') (fll;vkrIA i) = 8 H' 8 i/ . (9) 
k,r 

In Eqs. (7)-(9). the index l' has been introduced to distinguish 
between the states spanning multiply occurring 
[v]E[A] - [fl] [i.e .• r).l"v > I on the right ofEq. (6)]. 

As a first step in determining the linear combination 
occurring on the right side ofEq. (7). consider the semimaxi­
mal states for the irreps defined by Eq. (6). The semimaximal 
states (s.m.) can be defined using the weight raising gener­
ators Eij (i <i = 1.2 ..... p. p + I ..... p + q) of the unitary 
group U( p + q) as9 

Eij I(s.m.) = 0 (10) 

for i <i = 1.2 ..... p and i <i = p + I ..... P + q. 

The semimaximality condition defined by Eq. (10) can also 
be restated as requiring that the component states spanning 
[fl] and [v] ofEq. (7) be of maximal weight. In terms of the 
partitions [fll.fl2' .. ·.fl p] and [VI' V2 • .... vq] of[fl] and [v]. 
respectively. defined as in Eq. (I) for the subgroups U( p) and 
U(q). we observe that the orbital occupancy indices ofEq. (2) 
take the values 

Let I fl; 1) and Iv; 1) denote. respectively. the maximal 
weight states of [fl] and [v] with occupancy indices as in Eq. 
(II). For nonzero subduction coefficients to exist on the right 
side ofEq. (7). we require that the same numbers of indices 
I ..... p .... ,p + q be assignable in all possible ways to the tab­
leau structure of [A ]. so that the result is a standard Weyl 
tableau. The assignment of indices 1 ..... p in numbers equal to 
that given by Eq. (11) to the [fl] substructure of [A ] is 
straightforward. since the former defines a standard subtab­
leau of the latter. The assignment ofp + I ..... p + q in num­
bers. as given by Eq. (11) to the skew portion [A ] - [fl]. is 
also straightforward and follows from rules (i). (ii). and a 
modified (iii). which led to Eq. (6). Rule (iii) given there is 
modified by the statement that the indices p + I ..... p + q be 
assigned to the skew portion [A ] - [fl] of [A ] in all possible 
ways consistent with Eq. (II). so that the resulting structure 
defines a standard Weyl tableau for [A ]. This can be readily 
illustrated for the restriction [4.3.2] ![2.1] ® [3.2.1] of 
U(6)!U(3) ® U(3). The self-explanatory branching diagram 
leading to allowed standard Weyl tableaus having occupan­
cies NI = 2. N2 = I. N3 = O. N4 = 3. Ns = 2. N6 = I is 
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1144 

, ~245 
1144~ .. 

~ .. ~~!~ 
~1144 

255 

11.. 114~ 1145 
2"~---~)2.. 245 

~ .. 

~ 1145 
246 

1146 1146 
2.. ~ 245 

1144 
245 
56 

1144 
246 
55 

1144 
255 
46 

1145 
245 
46 

1145 
246 
45 

1146 
245 
45 

where the branches leading to nonstandard tableaus have 
been omitted. This result indicates that only a subset of IA;j) 
leads to nonvanishing coefficients (Ajl ,u l;v1 or) on the right 
side of Eq. (7). 

Once a subset has been obtained as above, the semimax­
imality condition of Eq. (11) can be used on the right side of 
Eq. (7) to eliminate contributions from lower weight states of 
higher row symmetry irreps occurring on the right ofEq. (6). 
In doing this, it is only necessary to apply E;; + I (i = P + 1, 
P + 2, ... ,p + q - 1) to both sides ofEq. (7) and equate the 
result on the right side to zero, since the left side already 
gives zero. This need to use only E;; + I instead of all E;j (i <j) 
follows from the commutation relations satisfied by Eu, 

Eu = [Eu_I,Ej_lj] =EU- 1 -Ej_ljEU_I' (12) 

which lead to 

E;j I(s.m.) = - Ej _ IjEU- I I(s.m.) I 

= ( - y- ;Ej .. IjEj _ 2j I ···E;; + I I(s.m.) = O. (13) 

Equations (12) and (13) imply that only q - 1 independent 
equations, 

E;; + I I (Ail,u l;v1 r) IA;i) = 0 
j 

for i = P + 1, ... , + p + q, (14) 

can be used to eliminate the contributions from lower weight 
states of higher symmetry irreps ofEq. (6). The final combi­
nation occurring on the right ofEq. (7) after this elimination 
can only define a semimaximal state for the given restriction 
[A] t[,u] <81 [v] and does not have any contribution from the 
lower symmetry irreps [V]E[A] - [,u] occurring in Eq. (6). 
This again foilows since, by definition, at least one row of the 
tableau corresponding to [v'] is of less length than a corre­
sponding one for [v]. This forces the corresponding set of 
indices with occupancies as in Eq. (11) to share a column in 
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the skew portion [V']E[A ] - [,u]. The final set of essential 
unknowns occurring on the right side ofEq. (7) is equal to the 
number of times [v] occurs in [A] - [,u]. 

As an illustration consider again [4,3,2]![2,l] <81 [3,2,1] 
ofU(6)!U(3) <81 U(3). For notational convenience we label the 
states occurring in the final column of the branching dia­
gram for this example discussed earlier as ¢; (i = 1, ... ,6), 
read from top to bottom. We also replace the corresponding 
subduction coefficients on the right side ofEq. (7) by a; 
(i = 1, ... ,6) and require the determination of these unknowns 
for 

[4,3,2]! I ~ 
4 

5 

4 

Applying the generators E4.~ and Ey , to both sides of the 
above expression, noting that the left side yields zero in ei­
ther case and using the simple expressions for the matrix 
elements of these generators for the basis on the right of the 
above equation, we obtain the results 

1 4 ') [ \1'2 2V2 ] 4 5 --a I + a, + ----a4 2 
\1'5 . \1'5 4 

6 

1 4 }o [\1'3 2\1'3] 2 4 6 + --a +----a 
\1'5 2 \1'5 5 

4 5 
and 

4 4) 
4 5 

5 

[ 
v'3 \1'3 \1'3 

+ 2v'2a4+M4+~5 

1 1 4 5) 
V15 ] + ----a6 2 4 5 = O. 
2\1'2 4 5 

Since the basis states of [4,3,2] occurring on the left side of 
the above equations form an orthonormal set, we obtain four 
defining equations for the six unknowns a I"" ,a6 • Using these 
equations to eliminate four of them, we get 

[4,3'2HI~ I)X! : ') 
[

2\1'2 1] 
=a4 --;;51/;1+¢4- \1'51/;6 

+a5[(2\1'2)1/;1-21/;2- :51/;1+¢5- ~~¢6l 
Since the semimaximality condition holds for all arbitrary 
values a4 , as, we can choose linearly independent semimaxi­
mal states for this restriction, as 

[4,3,2J11~ I)X! : 4;1) 

= _1_[(2V2)"'l - (\1'5)1/;4 + 1/;6] 
\1'14 '1'. 
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and 

[4,3,2]1 ~ 1) X ~ ~ 4;2) 

= )83 [(2y'1O)tPl - (2y'5)tP2 - 4tP3 

+ (y'5)tP5 - (y'2)tP6]' 

An orthonormal pair of states may be generated from these 
using the Schmidt orthogonalization procedure. We observe 
that the occurrence of the two basis states for the restriction 
coincides with the twofold multiplicity of occurrence of 
[3,2,1] in [4,3,2] - [2,1], as illustrated in Eq. (5). 

3. SUMMARY AND DISCUSSION 

The procedure outlined in Sec. 2 for generating the sub­
duced representations of the unitary group consists basically 
of the following. Given [A. ]of U( p + q) with definite sub­
structure [,u] ofU( p) we first obtain the subduction series as 
in Eq. (6) using rules (i)-(iii) presented there. For any 
[,u] ® [v] occurring in the reduction of[,u] ® ([A.] - [,u]) we 
generate the maximal weight states for the component repre­
sentations having the occupancies as in Eq. (11). Assigning 
these orbital indices to the tableau corresponding to [A. ] the 
required Weyl tableaus are generated. Using these to define a 
linear combination as in Eq. (7), the generators Eii + I 

(i = P + 1,oo.,p + q) are applied to it and the result equated to 
zero. This leads to defining relations among the subduction 
coefficients and makes it possible to eliminate some of them. 
The number of remaining coefficients is equal to the multi­
plicity index rA!'-y. If rA!'-y = 1, only one unknown is left 
which can be fixed by normalization. If, on the other hand, 
rA!,-y> 1 we find that a set of unique semimaximal states 
cannot be obtained. In this case a method similar to the one 
used by Patera and Sharp 17 and Harter and Patterson 18 in 
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their studies of angular momentum projected states has been 
employed to obtain linearly independent semimaximal 
states. These can then be Schmidt orthogonalized. Once the 
semi maximal states have been realized the others follow on 
using the lowering generators E ij (i > j = 1,00' ,p and 
i> j = P + 1,oo.,p + q) of the subgroup 
U(p) ® U(q)CU(p + q). 

Since a program has been developed recently for gener­
ating the canonical basis states for the finite dimensional 
irreps ofU(n)19 corresponding to a specified occupancy in­
dex set and for determining the matrix elements of the gener­
ators8 of the group between any two of these, the task of 
using the present procedure is considerably simplified. 
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The decomposition of representations of supergroups into representations of subgroups is needed 
in practical applications. In this paper we set up and exploit a fruitful one-to-one correspondence 
between the Lie group branching SU (N + M)::l SU(N) ® SU(M) ® U( 1) and the supergroup 
branchings SU(N IMPSU(N) ® SU(M) ® U(l) and SU(NI + N21MI + M2PSU(N/Md 
® SU(N21 M 2) ® U( 1). A simple and useful prescription is discovered for obtaining the SU(N 1M) 
branching rules from those of SU(N + M) for any representation. A large class of examples, 
sufficient for many physical applications we can foresee, are explicitly worked out and tabulated. 

PACS numbers: 02.20 + b, 1l.30.Pb, 21.60.Fw 

I. INTRODUCTION 

Superalgebras and supergroups are relevant to mixed 
systems ofbosons and fermions. I They were introduced into 
physics in the context of dual models2 and were subsequently 
used in supersymmetric field theories3 and supergravity.4 
The first experimental evidence of a supersymmetric pheno­
menon in Nature has recently come from nuclear physics: A 
scheme based on the supergroup U(6/4) has been suggested 
to describe many properties of nuclei in the Os-Pt region. 5 

Also, lately the representations of the supergroup SU(N 1M) 
with a vanishing eigenvalue of the cubic Casimir operator 
have been used to construct models of composite quarks and 
leptons. 6 

Classification aspects of superalgebras have been stud­
ied extensively.7 However, with the new physical applica­
tions5

•
6 one needed especially an explicit construction of the 

representations of superalgebras. The most extensive and 
practical results were obtained by introducing a symmetriza­
tion-antisymmetrization procedure (called supersymmetri­
zation),8 of direct products of fundamental (defining) repre­
sentations. Part of these results have also been obtained by 
other methods.9 In particular, a labelling of irreducible re­
presentations in terms of Dynkin superdiagrams was given 
by Kac,9 who also computed the mathematical properties 
(dimensions, etc.) of "typical" representations. These are the 
representations containing an equal number ofbosons and 
fermions. However, "nontypical" representations are infini­
tely more numerous than "typical" ones. In the applications 
of Refs. 5 and 6 it is nontypical representations that were 
needed. The properties of both typical and nontypical repre­
sentations were computed using Young supertableaux meth­
ods and given in the form of practical formulas in Ref. 8. The 
relation between supertableaux and Kac-Dynkin diagrams 
is obtained in Ref. 10. In addition to these finite dimensional 
representations, there are the infinite dimensional unitary 
representations of noncompact supergroups, which are real­
ized on coset spaces in the form of induced representations. 
In supersymmetric field theoretical applications3

•
4 the su­

percoset space plays the role of superspace, which includes 

alResearch supported in part by the U.S. Department of Energy, Contract 
Nos. DE-AC02-76ER03074 and DE-AC02-76ER03075. 

the Minkowski position xI" and the Majorana Grassmann 
variables () ~. Geometrical properties of such representa­
tions are presently under study in the context of supersym­
metric field theory and supergravity and will be reported 
elsewhere. 

The rules of supersymmetrization are summarized by 
supertableaux,8 which are similar in appearance to ordinary 
Young tableaux but indicate opposite symmetrization pro­
perties for the bosonic and fermionic components of the fun­
damental representations. The generalized supertableau 
contains both dotted IZI and undotted IZI boxes with a slash 
through each box to distinguish them from ordinary Young 
tableaux. An undotted box IZI corresponds to the covariant 
basis of the fundamental representation, which may be writ­
ten in terms of a tensor with a single lower index ¢ A • Similar­
ly, a dotted box IZI corresponds to the conjugate of the funda­
mental representation whose contravariant basis may be 
written as ¢ A with an upper index. 

In previous papersB we constructed the representations 
of SU(N 1M), Osp(N 12M), and P(N) type supergroups in 
terms of direct products of (covariant and contravariant) 
fundamental representations. This was done by using analo­
gies with the known methods II for constructing representa­
tions of ordinary Lie groups, which are summarized in the 
next paragraph. We formally associated certain supergroups 
with ordinary Lie groups by observing similar properties in 
their fundamental (defining) representations: 

SU(N 1M) with SU(N + M), 

Osp(N 12M) with O(N + 2M), 
P(N) with Sp(2N). (1.1) 

We then established a formal one-to-one correspondence 
between their higher irreducible representations whenever 
the shape of the supertableau for the supergroup was the 
same as the Young tableau for the corresponding ordinary 
Lie group. It was then possible to construct explicit irreduci­
ble matrix representations of the supergroup element, in di­
rect product space. The super character was calculated and 
given in the form of a compact and explicit formula involv­
ing the supertrace of powers of the fundamental representa­
tion, that is Str( U "), where U is the group element in the 
fundamental representation. These expressions were com-
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pared to those of the ordinary groups and were seen to differ 
only in the replacement of supertrace by trace, provided the 
tableaux were in one-to-one correspondence. The correspon­
dence guaranteed the equality of the various combinatoric 
factors indicated by the tableaux, except for the supertrace 
~ trace distinction. This basic observation allowed us to 
calculate characters of ordinary Lie groups and thus derive 
our new formula for supercharacters. From supercharacters 
we easily wrote down formulas for the dimensions of these 
representations and eigenvalues of all Casimir operators.'!'. 
Our formulas, when specialized to ordinary Lie groups, give 
the known results, but in some cases in a new form, in parti­
cular when dotted boxes are involved. 

The rules of tensor products for obtaining irreducible 
representations of ordinary Lie groups can be summarized as 
follows. For the group SU(N) the basis for higher irreducible 
representations can be constructed in terms of direct pro­
ducts of only the fundamental representation D ~<Pa' 
a = 1,2, ... ,N, according to the rules of Young tableaux." 
However, as is often convenient and more transparent in 
physical applications, physicists use tensors containing both 
lower (covariant) and upper (contravariant) indices, where 
an upper index may be represented by a dotted box <p a ~ D. J 2 

An irreducible SU(N) tensor is obtained by symmetrizing 
lower and upper indices independently, according to inde­
pendent Young tableaux, and then subtracting all possible 
traces between upper and lower indices, by using the Kron­
ecker delta {jab, which is an invariant ofSU(N). The traceless 
tensor thus obtained forms the basis of an irreducible repre­
sentation ofSU(N). All these operations can be summarized 
by a generalized Young tableau containing both dotted and 
undotted boxes, as in Fig. 1. 

diagonals 

\ n 
I • I • · · ./', V 11l 

I • · · / · , , I / , 
/ , · · · , 

/ , 
/ , 

/ · · , 
/ , 

/ · · , 

....:.. -· -

FIG. l. A generalized Young tableau. 

Consider such a tableau with r undotted and;' dotted rows. 
The Young tableau is legal provided n1>nZ>···>n,>O and 
m J>m2> ... >mr >O. For SU(N) the tensor will vanish and the 
tableau is meaningless unless 

r<N, r<,N - r. (1.2) 

These inequalities, in particular the last one, follow from the 
remarks below and the fact that if more than N indices are 
antisymmetrized in any column, the tensor vanishes. Any 
column with k dotted boxes may be replaced by a column 
with N - k undotted boxes, that is 

(1.3) 
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This is seen by using the SU(N) in variance properties of the 
completely antisymmetric Levi-Civita tensor ta,a,,,.a, or 
Ea,a,,,.a s in N dimensions. Thus, any tableau containing dot­
ted boxes can be converted to a conventional tableau con­
taining only undotted boxes. Because ofEq. (1.3), any col­
umn containing exactly N dotted or N undotted boxes may 
be ignored as far as the SU(N) transformation is concerned, 
since that part of the tensor represents a singlet ofSU(N) (but 
does not vanish). 

For groups O(2N), O(2N + 1), and Sp(2N) the complex 
conjugate representation is equivalent to the original repre­
sentation 0 ~ D. Therefore, there are no dotted boxes. An 
irreducible basis may be constructed just as in SU(N) by us­
ing Young tableaux with undotted boxes satisfying 
n J >n2>· .. >O. Because ofEq. (1.3), it is sufficient to consider 
N rows to obtain all irreducible representations (except 
spinor representations), but the tensor would not vanish un­
less the number of rows is more than the dimension of the 
fundamental representation (2N or 2N + I). Unlike SU(N), 
for these groups there are invariant tensors with two lower 
indices. They can be taken as the Kronecker delta {jab for 
SO(2N) and SO(2N + I) andas a standard 2N X 2Nantisym­
metric matrix 

( ~) Cab = - /,;r ~-~ 

for Sp(2N). After doing the appropriate Young tableau sym­
metrizations all possible "traces" must be taken away by 
contracting with these tensors. This means that traces are 
taken away when SO(2N) or SO(2N + 1) indices are symme­
trized and when Sp(2N) indices are antisymmetrized. The 
"traceless" tensor thus obtained forms the basis of an irredu­
cible representation of the above groups. 

For the supergroups in Eq. (1.1), the forms of the super­
tableaux are the same as the corresponding groups except for 
D or 0 replacing D or 0 and "supertraces" taken away in­
stead of traces by contracting with the appropriate superin­
variant tensor. x The "supertraceless" tensors so obtained 
form irreducible bases for the supergroups. For supergroups 
the restrictions ofEq. (1.2) are removed and Eq. (1.3) no 
longer holds. This is because there are no completely anti­
symmetric Levi-Civita tensors for supergroups. The invar­
iant superdeterminant which plays a similar role to the de­
terminant cannot be written in terms of a tensor with a finite 
number of indices since it is a ratio of two ordinary determi­
nants. As a consequence, supertableaux can have any num­
ber of rows with dotted as well as undotted boxes. Further­
more, supertableaux with dotted boxes can no longer be 
converted to supertableaux with only un dotted boxes since 
Eq. (1.3) does not hold [exceptfor special cases as in Ref 10]. 
Therefore, unlike SU(N), representations described by dot­
ted supertableaux are independent ones and the notation 
with dotted boxes is necessary. 

The SU(N / M) => SU(N) ® SU(M) ® U( I) branching rules 
of the superrepresentations is of primary importance in prac­
tical physical applications.5

,6 This decomposition is also the 
key for establishing the relation 10 between supertableaux 
and the Kac-Dynkin diagrams. The irreducibility of our re­
presentations, which was discussed to a limited extent in our 
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previous work,8 becomes evident after this con.nection. In 
this article we will explicitly study these branchmg rules. We 
will also indicate the branching rules with respect to other 
subgroups, such as SU(NI + N2/MI + M2PSU(NIIMI) 
® SU(N2IM2) ® U(I), which follow from the same methods. 
The same techniques apply to Osp(N 12M) and P(N). 

II. SU(NIM) BRANCHING RULES FROM THOSE OF 
SU(N+ M) 

As in our previous work, we continue to make progress 
by further exploiting the relationship between SU(N 1M) and 
SU(N + M). Here we will compare the branching rules for 

SU(N +M):::>SU(N)®SU(M)® U(I) 

and 
SU(N IMPSU(N)®SU(M)® U(I). (2.1) 

In the N + M dimensional fundamental representation, the 
U(I) generator is a traceless matrix for SU(N + M) and a 
supertracelessoneforSU(N 1M). Up toan overall constant, it 
is given as 

U(I): (liN I 0 ) for SU(N + M), o -- 11M 
(2.2) 

( liN I 0 ) U(I): 0 11M for SU(N 1M). 

In the following we will work our way up by starting with a 
few simple examples and eventually arrive at some general 
observations that hold for any representation. 

The fundamental representation ifJ A - O( or 1Zl) can be 
split into the direct sum ifJ A = ¢> a ffi if; a' Here the N dimen­
sional piece ifJa' a = 1,2, ... ,N, transforms like the fundamen­
tal representation ofSU(N), is singlet under SU(M), and car­
ries the U( 1) charge liN. We denote this part by 
ifJa -(O,I)I/N' Similarly, the M dimensional piece if;", 
a = 1,2, ... ,M, belongs to the fundamental representation of 
SU(M), is a singlet under SU(N), and carries the U( I) charge 
(- lIM)forSU(N + M)and 11M forSU(N 1M). We denote 
it by if;" - (1,0) _ 11M or (I,O)IIM' respectively. For 
SU(N + M) </J a and if; a are both bosons (or both fermions). 
For SU(N 1M) one of them is a boson and the other is a fer­
mion. In representations of Class 18 we chose ifJ = boson and 
if; = fermion. It is sufficient to restrict ourselves to only class 
I representations since all other representations (Class II and 
mixed cases) can be obtained from those of pure Class I re­
presentations by simply switching bosons and fermions in 
the final basis without changing the matrix representation of 
the group element. 8 

From the above explanation, the branching equation 
(2.1) for the fundamental representation ifJ A = ifJa ffi if;a can 
be expressed in terms of tableaux as 

0= (O,I)I/.v ffi (I,D) -I/M for SU(N + M), 
(2.3) 

IZl = (O,lluN ffi (I,O)IIM for SU(N 1M). 

Next consider the completely symmetric (completely su­
persymmetric) tensor with n indices ifJ(A,A, .. -A,,)' By specializ­
ing each index Ai = ai ffi ai' where ai = 1,2, ... ,N and a i 
= 1,2, ... ,M, we can find the various SU(N) ® SU(M) ® U(I) 

components of this tensor as 
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(2.4) 

The U( 1) charges can be computed by assigning liN to each 
a i and - lIM( + 11M) to each a i • For SU(N + M) 
ifJ(a,a2 ... an _ ,lI"n _, + ,"'''N) must be completely symmetrized in 
both sets of indices a i or a i since the original indices (A I···A N ) 

were completely symmetrized. Thus, it transforms as the 
direct product representation 

(ODO~O, OO~OO) 
ofSU(N) X SU(M). But for SU(N 1M), since supersymmetri­
zation8 of (A IAz· .. A n ) implies symmetrization of the bosons 
ifJ a, and antisymmetrization of the fermions if; a,' the bosonic 
indices (a ,a z· .. a n _ k) are symmetric but the fermionic indices 
(an _ k + I .. ·an) are antisymmetric. Thus, from (2.4) we can 
write the branching rule8 

n (n-k) k 

SU(N+M)~= k~O ('Ii-;'I?, 'ITD)(n.k)/N-k/M 

(2.5) 
n n (n-k) 

Su{N/M): ~1= L (@. §}k)(n-k)/N+k/M 
k=O 

The number of terms appearing in the first of these equations 
is (n + 1). However, in the second equation some of the 
Young tableaux 

§ k 
o 

for SU(M) vanish if k > M. Thus, if n <M there will be n + I 
terms, but if n > M there will be fewer terms. 

Note that the pictures in Eq. (2.5) are independent ofthe 
value of Nand M. They are completely determined by the 
permutation symmetry of the original one row tableau. 
Therefore, the comparison of the branching rule for Lie 
groups and Lie supergroups need not be restricted to groups 
that have identical subgroups. For example, instead of com­
paring the branching rules ofSU(6/4) to those of SU(lO) we 
may just as well compare them to those ofSU(75), since the 
pictures of SUr 10) and SU(75) are identical except that 
Young tableaux for SUr 10) with more than 10 rows vanish. 
Similarly, for a given shape of the supertableau the pictures 
ofSU(6/4) are identical with those of any other SU(N 1M) 
except for the illegal SU(N) or SU(M) tableaux that vanish. 
Thus, in branching rule calculations, we will always consider 
N andM to be as large as necessary so that none of the SU(N) 
or SU(M) tableaux vanish for both SU(N + M) and 
SU(N 1M). Thus, the branching rule pictures that are ob­
tained will be generic to the tableau and independent of the 
values of Nand M. They will depend only on the numbers m i 
and ni of the dotted and undotted boxes in the original tab­
leau as, e.g., in Fig.!. After obtaining the branching rule for 
a given tableau specified by m i and n i (not for given M and 
N), we can specialize to any desired values of Nand M and 
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eliminate, if necessary, any illegal SU(N) or SU(M) tableau 
that does not satisfy Eq. (1.2) for given valuesofr, r, andN (or 
M). In this way we obtain branching rules for the whole 
series of SU(N 1M) supergroups rather than specific N,M. 
Equation (2.5), which is the first such example, was obtained 
in Ref. 8 and through other methods in Ref. 9. 

Next we consider the SU(N + M) tableau 

and SU(N 1M) supertableau 

which correspond to a tensor <P(A,A,A,);B,. By specializing the 
indices A; = a; EB a;. BI = b l EB/3I' we obtain the various 
components. The independent components are specified by 
considering the indices a; to be lower than the indices b; 
within SU(N) and both a; andb; to be lower than thea; or/3; 
within SU(N + M), when they are allowed to take values 
A = 1,2, ... ,N + M. Then we obtain 

¢(AIA2A~J;BI = ¢(aIQ2al);bl EB tP(aIQ2a,);Pl €B <P(QI Q 2){u 1);b t ' 

EB <P(a,a,lIa,);{3, EB <P(a,)(a,n,);b, 

ffi tP(G 1Hu2a 1);{31 ffi <P(a 1u 2u 1J;{31 • (2.6) 

Note that we did not include <P(a,a,a,);b" and some others, 
even though they could appear as possible components of the 
tensor. This is because of the ordering rule a; < b, < a; </3;. 
which allows us to select the independent components of the 
tensor only once. According to this rule, we cannot allow b l 

to appear in the second row when the first row contains only 
a's. The component with the symmetries of <P(a,a,a,);b, is al­
ready counted, as seen below. 

For SU(N + M) Eq. (2.6) can be written in terms of 
SU(N) ® SU(M) Young tableaux as 

4>(0 102 0 3); bl = ( [fD ,I 1 

4>(0102H03l;/JI=( EP ,0 

4>(0Il(0203l;bl=( 8,ml 

4>(0102 03l; B, = ( CIIJ ,0 1 

4>(0102l(03l;B,=( m,OJ l+(OJ.8 1 

4>(0IH020 3l;BI=( O,tFl+( O,CIIJ 1 

4>(0,02 03l ;B,= ( I ,g:n 1 

(2.7) 

Note that <Pla,a,)(a,);{3, has two irreducible SU(M) components 
since the a 3 index in the first row and the /31 index in the 
second row are not forced to be in any symmetry relation 
relative to each other. Thus, we obtain the two irreducible 
pieces, because for SU(M) 

o®o = meB (2.8) 

Similarly, <Pla,)(a,a,);{3, has two irreducible components since 

(2.9) 

The second piece in Eq. (2.9) corresponds to the component 

<Pla,a,a,);b, mentioned above. 
Thus, for SU(N + M)~SU(N) ® SU(M) ® U(l) the 
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branching rule for this tableau is 

a=o = (g:o,1 l41N (J) (I, EFJ l_4/M (J) (0::0,0 l31N-I/M 

(J)(D, CIIJlI/N_3/Me(EP,ol3/N_I/M 

e (O,tp l I/N_3/M e (CD, BlZ/N-Z/M 

e( B,OJlZ/N-Z/M $ (OJ,[DlZ/N_Z/M 

(2. lOa) 

Note that in the final result the pictures are symmetric 
under the interchange of SU(M) and SU(N), as they should 
be, since the permutation symmetry of the original tableau 
does not distinguish between SU(N) and SU(M) indices. 
Identical results would be obtained by considering the a;,b; 
indices to be higher compared to the a; indices. The SU(N) 
+-+SU(M) interchangeability of the branching rule reflects 
this fact. Thus, for every irreducible component (X,Y) there 
exists another irreducible component (Y ,x), where X and Y 
represent the pictures of Young tableaux. 

The same reasoning can be applied step by step to the 
SU(N 1M) group. The only difference is that whenever the 
a; 's were symmetrized within SU(N + M) they should be 
antisymmetrized within SU(N 1M) and vice versa. This is re­
quired by the supersymmetrization indicated by the super­
tableau8

• The a; 's have the same permutation properties in 
both SU(N + M) and SU(N 1M) as in the previous example. 
Thus, for SU(N 1M), Eq. (2.7) will be modified by changing 
every SU(M) row into a column and vice versa. This means 
that every irreducible component (X, Y) that appeared for 
SU(N + M) will have a counterpart (X,Y) for SU(N 1M), 
where Yis an SU(M) Young tableau reflected along the diag­
onal relative to Y. Thus, the analog ofEq. (2. lOa) for 
SU(N IMPSU(N) ® SU(M) ® U(l) becomes 

~ =( g:::o, Il41N $( I, W l4/M $ (0TI,Ol3/N+I/M 

$ (O,§ 1 I/N+3/M $( EP,Dl3/N+I/M 

e (0, SJ lI/N+3/M e( OJ ,CD l2.lN+Z/M 

e(B,BlZ/N+Z/M e(CD, BlZIN+Z/M (2. lOb) 

Note that the 1/ M pieces in the U( l)'s have switched signs. 
Furthermore, the pictures are now symmetric under the 
SU(N )+-+SU(M) interchange only after being reflected along 
the diagonal. That is, for every irreducible component (X, Y) 
there exists also (Y ,X ). 

We use the same methods as above for tableaux contain­
ing n, boxes in the first row and n2 boxes in the second row, 
where n,>n 2>O. The result for SU(N + M) is 

~~ Uill" I 

(2.11a) 

whileforSU(N IM)weonlyneedtoreflecttheSU(M)tableau 
and obtain 
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n2 k2 nl-n2+ kz-i 
L L L 

kz=O i=o kl=k 2-i 

(2.11b) 

The U( 1) charges were not indicated for lack of space but 
they are computed by counting the number of boxes for 
SU(N) and SU(M) tableaux and given as 
(n[ + n2 - k[ - k2)1N + (k[ + k2)1M, with the upper sign 
forSU(N + M)andtheloweroneforSU(N 1M). The number 
of independent irreducible terms appearing in the sum ofEq. 
(2.11) is easily computed to be 

(2.12) 

Some of these terms may vanish if Nor M are too small and 
the tableau becomes illegal according to Eq. (1.2). Equations 
(2.11) reduce to (2.5) for the special case n2 = o. 

After obtaining the result for 1 and 2 rows, it is immedi­
ate to arrive at the branching rule for 1 and 2 columns, sim­
ply by reflecting each tableau along the diagonal. These and 
a few other cases not containing dotted boxes are summar­
ized in Table I. 

Returning to tableaux containing dotted boxes, we be­
gin with the fundamental contravariant representation, 
¢ A = ¢ a ® iff, which may be written as 

D = (D,l)_IIN ® (l,D)IIM for SU(N + M), 

1ZI=(D,l)_IIN®(l,D)_IIM forSU(NIM). (2.13) 
The next simplest case is the adjoint representation ¢ A B, 

which is a traceless matrix for SU(N + M) and supertraceless 
for SU(N 1M). Specializing the indices A = a ® a, B = b ® /3, 
we obtain the components 

TABLE I. Examples of branching rules for SU(N 1M) as compared with those ofSU(N + M). Note the limits on the number of boxes in the pictures. 

Only covariant representations are considered. 

SU(N+M) LI~1!TS ON TOTAL NUMBER OF TERMS 
IRREP 8 SU(N) IRREP Un) CHARGE I F ALI. TABLEAUX AR 71LEGAL 

SU(N/M) SU(Nl Nl.!J'1!iERS OF BOXES [SEE EO (1.2) 

n [cab ctn] I I I I II I I 
n-k _ k n 

[cfIb § k 1 N +i1 
o . k ~. n n + I 

IIVVVVVVI 

I" [ ~n-k § k 1 
n-k _ k 

o ~ k : 

I" 
-N + i1 n n + 1 

r ~n-k ern k 1 

LIfW" n, r n , -k ,EE!P HP~l~,i 1 o ~ k2 ;: TI7 

n2 n2-k 2 , . TIl+n2-kl-kL _ kl+k? 
o ~ j ~ k2 1,;(n,-n,+I) (n,+I)(n,+2) 

~ ( n
,
-

k HiP , k1+j~ k,-.' 1 
+--

n, N M 
n, n2-k2 k?-j ~ kl ~ nl-n2+k2-j 

"1 ~'" [ ~n'-k2 ~ 'J n,-k, . k'-J o ~ k2 ~ n? , k l~J 
nl+n7-kl-k 7 - kl+k, 

o " j :::: k2 !;(nl-n,+I) (n,+l) (n,+2) ------ --

'e, N + M 

n, 
[ nl-k1~n'-k', EEPk1+~ 1 k,-j " kl ~ n I-n2+k2-j 

k, -J 

n 'r,' n-k k+j 
j = 0,1 ,....-'-. ~ 

~ ~-j 
n+m-k-t _ k+{, 

j : t ,: m 2nm+n-m+l 
N 

+ 
M 

I-j-l\fuSk~n-l+(l-j)~fm 

r n-k 
r-'---

~, k+j{~ ~ei = Kronecker delta 

r-kl~kmPJ (1 1 J [m ] m n-k2 , nm (n+m) I 
. k, - l'N :': Ii it k i 

o s k, S k, ... ~ k , n 

r~ '''r N m n!m! 

n-k 1 

m :~:l~ 
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(2.14) 

The pieces,pa band ,p/3 are not irreducible with respect to 
SU(N)andSU(M),respectively, since we have not yet insured 
that they are traceless. Thus 

,/,b :i,b lob 'l'a ='I'a + N a ,p=(ITJ,I)EIl(I,I), 

,/, 13 _:i, 13 - 1 ~ f3,/,_ 'l'a -'I'a + MUa 'I'-(I,ITJ)EIl(I,I), (2.15) 

where the singlet part,p = (1,1) is identical in both pieces so 
~hat the tracelessness (supertracelessness) condition on ,p A B 

IS satisfied. The result for SU(N + M) is 

ITJ = (OJ,I)o Ell (l,ITJ)o Ell (1,1)0 

Ell (O,O)lIN + 11M Ell (0,0) _ liN _ 11M, 

while for SU(N 1M) we have 

IZ1ZI = (OJ, 1)0 Ell (1 ,ITJ)o Ell (1,1)0 

Ell (O,O)lIN _ 11M Ell (0,0) _ liN + 11M' 

(2.16a) 

(2.16b) 

Next we consider the tensor ,p !:!::::!~ with both lower 
and upper indices symmetrized (or supersymmetrized) and 
satisfying the trace (or supertrace) condition. Specializing 
the indices, we have 

,/, B,B, ... B m = ~ ~,/, (b,b, ... b" ,)(f3m _, + ]···f3m ) 

0/ A ,A 2 ,··A n "-' L 'P (aIQl···Qn _ .d(an k + I,·a n)· 
k=O/=O 

(2.17) 

The U( 1) quantum numbers can be calculated by assign­
ing1/Nforeachau -1/Nforeachbu (+ 1/M)foreacha;, 
and ( + 1/ M) for each 13" where the upper sign is for 
SU(N + M) and the lower signs for SU(N 1M). The various 
terms in the sum are, in general, reducible with respect to 
SU(N) ® SU(M). For example, for n = 2 and m = 2, 

,/, (b,b,) = (DODO 1) Ell (DO 1) '" (1 1) 'P(a l a 2 ) " w , , 

,/, (b,b,) = (DOD 0) Ell (0 0) etc. 
o/(a1u;;.) " , (2.18) 

Note that, for each reduction which is achieved by using a 
Kronecker delta oa b (or oa (3), we get to eliminate one dotted 
and one undotted box from the picture of an SU(N) [or an 
SU(M)] tableau. Just as the,p in Eq. (2.15), we must be aware 

that the tracelessness of the original tensor,p A""A.B""B
m im­

poses that some of the pieces in the various traces are identi­
cal and should not be counted more than once. To insure this 
property we count only the traces calculated by contracting 
with the SU(M) oa 13 and ignore those obtained withoa b, since 
they are the same ones. With these conditions, we arrive at 
the SU(N + M) branching rule 

m n 
le,e'elel_11 I I I I I I 

n m min (k,/) 
= L.: L.: L.: 

k=O t=O i =0 

rm- t n-k t-i k-i ] 
LOIOIOIi\1 11,10101011 111_ (2.19a) 

The sum over i takes care of the traces and produces the 
pieces similar to the ,p-(I, 1) of Eq. (2.15). The Uti) charge, 
whic depends only on the number of boxes, is given as 
(n - k - m + I)IN - (k -I)IM. 

For SU(N 1M) the reasoning is identical; however, the 
a;'s and13;'s should now be antisymmetrized as opposed to 
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being symmetrized in the previous case. Therefore, the 
SU(M) tableaux should be changed relative to the previous 
case by substituting columns instead of rows. Otherwise, ev­
ery step can be repeated to obtain 

!J!!iJAiVwVVI 

= L L.: L 101.1.1.11 I I, 
n m min (k,f) [m. e n-k 

k=O t=O i =0 
to; ~ k-; ] (2.19b) 

We see that in going from SU(N + M) to SU(N 1M), the 
SU(M) tableaux get reflected independently for the dotted 
and undotted boxes along their respective diagonals. The 
diagonals are shown in Fig. 1. 

Our method should be quite clear to the reader by now. 
Without giving any more details, we list our results for a few 
tableaux containing dotted boxes in Table II. We emphasize 
that these correspond to arbitrarily large representations of 
arbitrarily large groups. Together with Table I we expect 
that these concrete results should be quite sufficient for a 
variety of physical applications that we can now foresee. 
More complicated cases can be worked out, if necessary, 
with the same methods. 

III. BRANCHING RULE FOR 
SU(N1 + NzIM1 + Mz)::>SU(N1IM1) ®SU(NzIMz) ® U(1) 

This branching is again obtained from that of 
SU(N + M)::>SU(N)XSU(M)xU(I) by a reinterpreta­
tion of the boxes in the tableaux. Let us first identify the 
fundamental representation ,p A =,p a EIl,p a as follows: ,p a 
contains Nl bosons andMl fermions and belongs to the fun­
damental representation,pa -IZI ofSU(NlIMtl; similarly,,po 
contains Nz bosons and M z fermions and belongs to the fun­
damental representation,pa -IZI of SU(Nzl M z)· 

The U( 1) generator, which is aNI + Ml + Nz + M z di­
mensional diagonal matrix in the fundamental representa­
tion, is identified as 

(
1/(Nl -Ml) 0 ) Nl +Ml. 

o -1/(Nz -Mz) N2 +M2 (3.1) 

Thus, for each index a or a we obtain the Uti) charges 
1/(Nl - MIl or - 1/(N2 - Mz), respectively. Similarly, the 
U( 1) is computed by replacing every 1/ Nor - 1/ M in the 
old expressions by 1/(Nl - M l) or - 1/(N2 - Mz), respec­
tively. Therefore, ,p A =,pa EIl,pa may be written in terms of 
tableaux as 

IZI = (IZI, 1) 1/(N, _ M,) Ell (1 ,IZI) _ lI(N, _ M,)' (3.2) 

Note the formal similarity to Eq. (2.3) for SU(N + M), except 
that every box is replaced by a slashed box, and the values of 
the U( 1) charges are cllmputed by different assignments to a 
and a, as explained above. 

The completely supersymmetric tensor ,p(A ,A, ... A.) can be 
decomposed by specializing each index Ai = ai Ell ai' just as 
in Eq. (2.4). However, the meaning of ,p(a,.a, .... a.P etc., now 
differs from the SU(N + M) case in that the indices (a 1,aZ"") 

or (al,aZ"") are supersymmetrized rather than simply sym­
metrized. Therefore, Eq. (2.5) now gets replaced by 
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TABLE II. Same as Table I, except for mixed covariant-i:ontravariant representations. 

SU(N+M) IRREP 
SU(N/M) 

m n 
1.,eIOlI.hl.'.II'11111 

m n 

wwvwfevww! 

·r 
n 

·r 
4 

~ n 

~l 

SU(N) " SU(~1) 

[ 
m-i n-k '.'.'.'.1 i II 

IRREP 

i-i k-i 1 !."I-I"II 

l 
m-i n-k 

1·'·'·'·1 j j I ,~-i , k-i 1 

[ m ~ . k· 1 
m-~ t n-k, Jj.t·I,-h , I 

r r· n-k f-iPj 
I m-t • Iij 
( . ' 

r . n-k 

I m-fF 

f-i 1 
, 
.•. J 

I ~ 
I 

k-l 
, 

r 
,~~i'. ,:~~ 1 

n-k k-l, 
, , J 

r,~-:t. rk
-

i 
1 

! 
n-k· 

t-i· 
, I 

mlww~nl 
nJ 

n n n-k k 

IZJ[Z11Zl1Zl1ZJ !ZJ!Zl = L (1Zl1Zl1Zl1Zl, 1Zl1ZI1Zl) , 
k~O 

with the U( I) charges given by 
[(n - k )I(NI - M I ) - k I(N2 - M 2)]. 
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(3.3) 

un) CHARGE 

n-k-m+i - k-i ---+-
N M 

n-k-m+~ - k~t --- +-~ 

N M 

n-k-m+f _ k-f ---- + .-~ 
N M 

n-k-m+{ :;: k.::.<' 
~ M 

n ]+n)-mj 

N 

N 

L!~lITS ON 
NU~ffiERS OF BOXES 

o ~ t ~ m 

o ~ i , min(k,j') 

o > i " min(k,f) 

i = 0,1 

i = 0,1 

o :;: E 1 ::: ml 

o :;: k:; ~ n2 

O"j~k, 

k)-j ~ kl ~ nl-n2+k2-j 

a ~ i, , min(k,-j,l,) 

o~ i 1$ min(kl-k 2+2j ,.ei"i~) 

i J =0,1; L =0,1 

i; + i.' ~ f 1 :::: m] 

TOTAL NUMBER OF 
IF ALL ~~ux ARE 
LEGAL [SEE EQ. (1. 2)1 

1 
6(m+l) (m+2) (3n-m+3) 

if n ~ m 

i(n+l) (n+2) (3m-n+3) 
if n > m 

1 
6(m+l) (m+2) (3n-m+3) 

if n ~ m 

1 
6(n+l) (n+2) (3m-n+3) 

if n ~ m 

2mn + Tn + n + 1 

2mn + m + n + I 

lin, + I) 

X I3m,n, + 2)(n, - n,1 

+ 2m,(2n, + I) + 2), 

ml>l 

The analysis is the same for any other supertableau and 
the result for the new branching rule is obtained from the 
known cases ofSU(N + M) by simply replacing every SU(N) 
or SU(M) box 0 by slashed boxes IZl belonging to SU(N\IM\) 
or SU(N2IM2), respectively. Therefore, all the results listed 
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in Tables I and II are directly generalized to the new 
branching. 

IV. DISCUSSION AND CONCLUSIONS 

We have established a one-to-one correspondence 
between the branching rules SU(N + M)~SU(N) 
® SU(M) ® Uti) and SU(N IM)~SU(N) ® SU(M) ® Uti) as 
well as SU(NI + N21MI + M2PSU(N1/M1) ® SU(N2IM2) 
® U( 1). Some concrete examples, which we expect to be suf­
ficient for most physical applications, have been explicitly 
worked out and listed in Tables I and II. More complicated 
cases can be analyzed with the methods given here. 

For SU(N + M) branching rules, there are useful lists 
available in the literature. 13 Our SU(N + M) results are in 
complete agreement with these known cases. One virtue of 
our approach is that we are not limited by large dimensions 
of representations or groups. Thus, in our Tables I and II one 
finds large dimensions not covered in the extensive lists of 
Ref. 13. 

In making comparisons with these lists one must be 
aware that some Young tableaux for SU(N) or SU(M) be­
come illegal [see Eq. (1.2)] and vanish if either N or Mare too 
small. One may use the available SU(N + M) lists to derive 
additional practical SU(N 1M) results not covered in this pa­
per explicitly, provided Nand M are large enough to insure 
no tableau vanishes. Useful branching rules can be obtained 
from Ref. 13 or similar lists by noting the following general 
observations which follow from our analysis above. 

Consider an arbitrary Young tableau T for SU(N + M) 
and the SU(N) ® SU(M) ® U( 1) branching rule 

(4.1) 

where X and Y denote Y oungtableaux forSU(N) and SU(M), 
respectively. In general, T ,x,Y contain both dotted and un­
dotted boxes. In tables such as Ref. 13, Dynkin indices are 
used to label a representation. They must be converted to 
Young tableau notation in order to apply our method below. 

For every SU(N + M) Young tableau T, as in Fig. 1, we 
can define an SU(N 1M) supertableau T, with identical 
numbers n;, m; for its rows, except that every box 0 or D is 
replaced by a slashed box IZI or 0. We may then consider the 
branching rule for SU(N 1M )-+SU(N) ® SU(M) ® U( 1) as 

(4.2) 

where Y is the reflection of Yalong its diagonals. The dia­
gonals are shown in Fig. 1. Similarly, the branching rule for 
SU(NI +N21M1 +M2PSU(N/Md®SU(N2IM2 )®U(I) 
can be written as 

(4.3) 

where X and Yare the supertableaux analogous to X and Y. 
Equations (4.2) and (4.3) follow from (4.1) if one uses tensor 
languagetPB,B, ... A,A,··· and specializes each indexA; = a; Ell a o 
etc. It is necessary to consider the meaning of supersymme­
trization8 in relation to ordinary symmetrization, and then 
extracting irreducible SU(N) and SU(M) components. These 
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statements can be understood by following the examples in 
Tables I and II. 

Equation (4.1) contains the terms (I,T) and (T, 1), where 
Tis the SU(N) or SU(M) representation with the most boxes 
that could appear in the branching rule. The pictures that 
represent the decomposition T = }; Ell (X, Y) are independent 
of N or M. Therefore, we will assume that Nand M are large 
enough so that the Young tableau T or the reflection from its 
diagonals T does not vanish forSU(N) orSU(M). This insures 
that every (X, Y) or (X, Y) that could appear in the sum does 
not vanish for SU(N + M) or SU(N 1M). After obtaining the 
branching rules for such large N,M we can apply the result to 
smaller N,M, as it may be necessary in some practical appli­
cation. Then, we only need to eliminate the illegal SU(N) or 
SU(M) tableaux according to Eq. (1.2) 

The following statements hold for any decomposition 
noted in Eqs. (4.1), (4.2), and (4.3), and can be used as a check 
in any calculation. 

(1) The total number of undotted minus dotted boxes is 
identical in every term of the sum and equal to the same 
quantity for Tor T. 

(2) For a term (X,Y) that appears in Eq. (4.1), there 
should be another term (Y ,x) provided it does not vanish 
according to Eq. (1.2). For Eq. (4.2) this implies that for every 
term (X, Y) there should be a (Y,X), while in Eq. (4.3) for every 
(X,Y) there should exist a (Y,X). 

(3) The maximum nu~ber of rows and columns that can 
appear in any (X, Y) or (X, Y) or (X, Y), as well as the general 
shape of these Young tableaux, are predetermined by the 
numbe of rows and columns and general shape of Tor T. See 
the examples in Tables I and II. 

(4) The dimension of Tor T on the left-hand side of 
these equations should match with the sum of the dimen­
sions on the right-hand side. For this purpose one can use the 
practical dimension formulas for the numbers ofbosons and 
fermions developed in Ref. 8. On the right-hand side ofEc:!: 
(4.2) a fermion is obtained when the SU(M) representation Y 
contains an odd total number of dotted plus undotted boxes 
(independent of X). (This is a fermion in a Class I representa­
tion. For Class II we demand an odd number of boxes in X 
rather than in Y. While in mixed Class I-II representations 
the roles ofbosons and fermions may be interchanged.8 The 
representation of the group element is independent of the 
class.) 

We have not discussed branching rules for Osp(N 12M) 
and P(N). However, from the remarks in the Introduction 
and Ref. 8, and the methods of this paper, it is clear that Eqs. 
(4.1), (4.2), and (4.3) must also apply to these groups and that 
detailed branching rules can be obtained with the same ap-
proach as the present paper. . 

The results of this paper are used in Ref. 10 to establish 
the relation between Kac-Dynkin diagrams,9 which give a 
unique labeling of representations of supergroups, and 
Young supertableaux, which are practical for obtaining con­
crete results, as illustrated here. 
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A sum~ary ?fthe spec~ral theory for quasiperiodic sine- and sinh-Gordon equations is given. 
Analogles wlth whole-lme solitons and scattering theory motivates the discussion. The relation 
betw~en the ingre~ie~ts in t?e inverse spectral solution of the periodic sine-Gordon equation and 
physlcal charactenstlcs of sme-Gordon waves is emphasized. The explicit topics covered are 
summarized in the table of contents in the Introduction. 

PACS numbers: 02.30. + g 

I. INTRODUCTION 

The inverse scattering transform has been an extremely 
useful tool in the study of solitons. Its utility results, to a 
large extent, from (i) the practical importance of these isolat­
ed, localized nonlinear pulses and, at the same time, (ii) the 
precise yet simple description of these isolated pulses by the 
scattering transform. As a result, sparse configurations of 
solitons in isolation from each other are now very well 
understood. 

Frequently, however, physical situations arise which 
involve a high density of solitons. For example, finite-length 
nonlinear oscillators such as Josephson oscillators 1 or oscil­
lators in condensed matter physics2 often contain many 
densely packed solitons. Another example is the dispersive 
smoothing of shock waves. Molecular dynamics simulations 
of shocks in conservative lattices' show the shock is 
smoothed by a high frequency nonlinear wave train which 
can be interpreted as a dense configuration of many solitons. 
When the density of solitons is high, their tails interact; they 
are certainly not in isolation. 

For systems with a high density of solitons, one desires 
to compute either their deterministic or statistical behavior. 
The only mathematical transform for such calculations 
which currently exists is the "inverse spectral transform un­
der periodic boundary conditions." Although it is just as 
precise as the scattering transform, the periodic spectral 
transform has not been used in many applications, primarily 
because of its complicated description. In this series of pa­
pers, we use the inverse spectral solutions of the periodic 
sine-Gordon equation to study several concrete problems. 
Our intent in this series is to describe and use the spectral 
transform in a style which should make it easier for scientists 
to apply the transform to their own studies of dense collec­
tions of solitons. 

,ISupported in part by N.S.F. Grant No. MCS-8002969. 
blSupported in part by N.S.F. Grant No. MSC-7903S33 and by D.O.E. (Los 

Alamos National Laboratory, Group T-7). 
ci Address for the academic year 1981-1982: New York University, Courant 

Institute of Mathematical Sciences, 251 Mercer Street, New York, New 
York 10012. 

This first paper describes the present status of the par­
ticular periodic spectral transform which is appropriate for 
the sine-Gordon equation. In subsequent papers, we use this 
background to develop a Hamiltonian description of slowly 
modulating N-phase wave trains, verify the validity of this 
Hamiltonian description of wave trains using a formulation 
of the transform in terms of differentials on a Riemann sur­
face (see Ref. 4), and use the spectral transform to investigate 
finite-length nonlinear oscillators. 

This first paper summarizes the present status of the 
spectral solution of the periodic sine-Gordon equation. Al­
though we do present some new material [in particular, evi­
dence of spines in the spectrum (Sec. III), a representation of 
single phase radiation as a sequential translation of kink­
antikink components (Sec. V), an explicit numerical calcula­
tion of the paths of the f-l coordinates in a degenerate situa­
tion (Sec. VI), and a spectral characterization of "separable 
solutions" (Sec. VII)] our main goal is to present a concrete 
description of the periodic spectral transform for the sine­
Gordon equation. In each section we summarize those theo­
retical facts which we use throughout the series; and, in con­
siderable detail, we illustrate these facts and their conse­
quences with concrete examples. We emphasize the physical 
information which is carried by the spectral data such as the 
manner in which this data classifies the elementary excita­
tions (kink trains, breather trains, radiation) which are pre­
sent in the wave and the manner in which it specifies their 
physical characteristics (frequencies, wave numbers, etc.). 
Sections II, III, and IV provide general information about 
waves which contain arbitrary numbers of basic excitations, 
while the last sections describe specific, detailed information 
about waves which contain one and two basic excitations. 

We emphasize that our viewpoint in this paper is con­
siderably different from the viewpoints presented in the 
theoretical papers on the periodic spectral transform. We 
argue formally, using scattering theory and solitons in isola­
tion to motivate and interpret the periodic theory. We as­
sume the reader is familiar with sine-Gordon solitons and 
their scattering descriptions, as developed by Takhatajian 
and Faddeev,5 at least to the extent summarized in the Intro­
duction and Appendix of Ref. 6. Some knowledge of the 
band-gap structure of the spectrum of the Schrodinger equa­
tion with periodic potential (Floquet theory of Hill's equa-
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tion) will also be helpful. 
A detailed outline is provided by the section headings. 
I. Introduction 
II. Preliminaries 

II. 1 Sine-Gordon spectral theory: Analogies be­
tween periodic and whole-line problems 

II.2 Transfer matrix, Floquet discriminant, and 
Floquet solutions 

II.3 Generic properties of the spectrum a 
III. Qualitative insight into the spectrum a 
IV. Finite degrees of freedom 

IV.l 2N invariant simple spectra! E j J ; deter-
mination of a Riemann surface 

IV.2 ~-representation of N-phase wave train 
IV.3 8-function representation of N-phase wave 
train 

V. Traveling-wave solutions (single-phase waves) 
V.l Reduction to N = 1 
V.2 Direct ansatz method to display traveling 

waves 
V.3 ,u-representation for N = 1; catalog and phys­

ical characteristics of the traveling waves in 
terms of }:(s) = ! E I ,E2 J 

V.4 Infinite-product representation of 8-functions 
and summation representation of the traveling 
waves 

VI. The degenerate case of pure solitons 
VII. Separable solutions (N = 2) 

VII. 1 Definitions and motivations 

[(0 - 1) d i (0 1) 1 (e iU 

1 ° dx + "4 W 1 ° + 16 V E ° 
where w-ux + u"", = (tPl,tP2)T. Indeed, the linear system 

{ [(~ 
[(~ 

- 1) d i (0 1) 1 (e iU 

° dx + "4 w 1 ° + 16 V E ° 
- 1) d i (0 - +-w ° dt 4 1 

1) 1 (e iU 

° 16 VE ° 

which consists of the linear problem (II.2) augmented by a 
time flow for "', is compatible ("'XI = "'IX) if and only if the 
potentials u and w satisfy a sine-Gordon system, 

U , + U x = w, 

W, - Wx = - sinu. 

In this manner, the linear system (II.3) implicitly carries the 
content of the sine-Gordon field as a compatibility condi­
tion. This method for the integration of the sine-Gordon 
equation is due to LambH and has been clarified and devel­
oped by Ablowitz, Kaup, and Newe1l9 and Takhatajian and 
Faddeev.5 Since we use the exposition of the latter authors, 
we refer to Eq. (II.2) as the "Takhatajian-Faddeev eigenval­
ue problem." 
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Notice that if the potentials (u,w) are purely imaginary, 

u i"i/, w_i7r, 
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VII.2 "Open circuit" ~ spatial symmetry 
VII.3 Spatial symmetry ~ spectral symmetry 
VII.4 Consequences of the spectral symmetry 

(N = 2): separability, standing waves, and el­
liptic functions 

Appendix A. Scattering motivation 
A.l Infinite-line scattering properties 
A.2 Proof of Theorem l.III.1 

Appendix B. Derivation of the decomposition formulas 
Appendix C. Proof: spatial symmetry ~ spectral sym­

metry 
Appendix D. Elliptic integral formulas 

II. PRELIMINARIES 
1. Sine-Gordon spectral theory: analogies between 
periodic and whole-line problems 

Consider the sine-Gordon equation in Laboratory 
coordinates, 

U /I - U xx + sinu = 0, - 00 < x < 00. (11.1) 

To integrate all soliton equations, one adjoins to the nonlin­
ear partial differential equation a linear eigenvalue problem 
whose "potential" is given by a solution of the soliton equa­
tion. [The most familiar example is the use of the linear 
Schrodinger equation ( - tPxx + u(x)tP = EtP) to integrate 
the nonlinear Korteweg-de Vries equation 7 

(u , - 6uux + Uxxx = 0).] The integration of the sine-Gor­
don equation is accomplished through the following linear 
eigenvalue problem: 

(11.2) 

(1I.3a) 

(1I.3b) 

I 
this sine-Gordon system becomes the sinh-Gordon system 

u&t I + W X = 7f"", 

7r, - 'lr X = - sinh W . 

Linear problem (11.3), with u = iw ,w = i7f"", will integrate 
this sinh-Gordon system. As we will describe in the text, the 
mathematical properties of the sinh-Gordon problem are far 
simpler and better understood than those of the sine-Gordon 
problem. 

The origin of the sine-Gordon equation (11.1) as a com­
patibility condition for the system (11.3) is a fact which is 
local in (x,t), independent of boundary conditions. Once 
boundary conditions are imposed upon the sine-Gordon 
equation, the potentials u and w of the Takhatajian-Faddeev 
eigenvalue problem (11.2) inherit the same boundary condi­
tions. This boundary behavior of the potentials fixes the type 
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of spectrum which the eigenvalue problem (II.2) possesses. 
The nature of this spectrum, in turn, is related to the classes 
of fundamental excitations of the sine-Gordon field under 
the particular boundary conditions. 

For example, consider the sine-Gordon equation for 
real fields which vanish at Ix I = 00: 

u" - u xx + sinu = 0, - 00 < x < 00, 

u(x,t )-+O(mod21T) as Ix 1-00, 

ur(x,t)-+O as Ixl-oo. 

(II.4a) 

(I1.4b) 

(I1.4c) 

It is well known that the fundamental excitations in this case 
consist of solitons (kinks), antisolitons (antikinks), breathers, 
and radiation. (See Fig. 12 and Ref. 6 for a detailed discus­
sion.) When the potentials u(x) and w(x) of the Takhatajian­
Faddeev eigenvalue problem satisfy these vanishing boun­
dary conditions, this eigenvalue problem, viewed over the 
entire x axis, has continuous spectrum filling the positive E 
axis, and discrete bound states (eigenvalues) which occur ei­
ther at points on the negative real E axis or in complex conju­
gate pairs [see Fig. 2(b)]. The continuous spectrum for E > 0 
is related to radiation degrees of freedom for the sine-Gor­
don field, the negative eigenvalues E j < 0 label kink or anti­
kink solutions, and the conjugate bound state pairs E j ,E j 
label breather excitations. As the potentials u,w jiow in time 
according to the sine-Gordon equation, the locations of the 
bound state eigenvalues remain fixed and determine the 
speeds and widths of the solitons and the frequencies of the 
breathers. This temporal invariance of the spectrum is cen­
tral to the integration of the sine-Gordon equation, which is 
said to "generate an isospectraljiow" for the Takhatajian­
Faddeev eigenvalue problem. 

In this paper, we are concerned with the sine-Gordon 
equation under periodic boundary conditions, with period 
L 10: 

u,,-uxx+sinu=O, -oo<X<oo, 

eiu(X + L.r I = eiu(x.ll, 

ur(x + L,t) = ur(x,t). 

(II. Sa) 

(I1.Sb) 

(I1.Sc) 

When the potentials u and ware real and satisfy these period­
ic boundary conditions, the spectrum of (11.2), still defined 
over the whole x axis, is continuous spectrum. This spectrum 
consists of curves (or bands) which we will interpret as 
follows. 

(i) The discrete bound states for potentials with vanish­
ing boundary conditions have spread into narrow bands of 
continuous spectrum, and (ii) short "spines" of spectrum 
have grown off the positive E axis [see Fig. 4(b)]. 

The basic excitations of the real periodic sine-Gordon 
field turn out to consist of periodic trains of kinks or anti­
kinks (associated with the narrow bands of spectrum on the 
negative E axis), trains of breathers (associated with the nar­
row bands in conjugate pairs), and radiation which behaves 
much as Fourier modes for the linear Klein-Gordon field 
(and is presumably associated with the spines off the positive 
real axis). The isospectrality is now manifested by the invari­
ance of these bands of spectrum under the periodic sine­
Gordon flow. This spectral classification of the fundamental 
excitations in the periodic sine-Gordon field will be estab-
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lished in the following sections. We emphasize that, to be 
useful in applications, the correspondence between the loca­
tion of the spectrum and physical characteristics of the po­
tentials must be concretely understood; the manner by 
which some of these detailed facts can be obtained is de­
scribed in the body of the paper and in paper III. 

With these remarks in mind, we view the Takhatajian­
Faddeev eigenvalue problem (11.2) as a family of eigenvalue 
problems, defined over the entire x axis. This family, indexed 
by a time parameter t, is generated by the periodic sine-Gor­
don equation (II.S). Since the spectrum (T is invariant in t, (T is 
determined for all time by the periodic initial data u,u, 

u(x,t = o)=u, u,(x,t = O)==u(x), 

u(x + L) = u(x), 

via 

[(01 - 1) d i. 0 (0 1) ° dx + 4 (v + ux
) 1 0 

1 (e iU 0) ] + 16y/ E ° e - iu - y/ E '" = O. (11.6) 

We begin with a discussion of the general properties of the 
spectrum (T, and later consider several important special 
cases of U,U. 

2. Transfer matrix, Floquet discriminant, and Floquet 
solutions 

First, we define the tools which are used to display the 
spectrum (T, namely, the transfer matrix, Floquet discrimi­
nant, and F/oquet solutions. Fix a point X o, and a basis of 
solutionsof(II.6), ! c!>+(x,xo,E ),c!>_(x,xo,E) I, by the following 
initial conditions at x = X o: 

c!> + (x = xo,xo,E ) = G), c!> - (x = xo,xo,E) = (~). 
Notice that c!> + (x + L,xo,E) are also solutions of(II.6); this 
follows quickly from the periodicity ofw, exp( ± iu). There­
fore, we can expand these "new" solutions on the basis 
c!>± (x,xo,E): 

c!>+(x +L,xo,E) = tll(E)c!>+(x,xo,E) + t I2(E)c!>_(x,xo,E), 

c!>_(x + L,xo,E) = t 21 (E)c!>+(x,xo,E) + tnlE)c!>_(x,xo,E), 

or more concisely, 

(
c!>+(X +L,Xo,E)) = T(E) (c!>+(x,Xo,E)). (11.7) 
c!>_(x +L,xo,E) c!>_(x,xo,E) 

The (2 X 2) "transfer matrix" T (E), defined by (11.7), transfers 
the basis c!> ± (x,xo,E) across one period L of the potentials 
u,w. Iterating this formula (11.7) across N periods yields 

(
c!>+(X +NL,Xo,E)) = TN(E) (c!>+(X,xo,E)). (11.8) 
c!>_(x + NL,xo,E) c!>_(x,x()lE) 

By definition, a complex number E belongs to the spectrum 
(T of the Takhatajian-Faddeev eigenvalue problem (11.6) if 
and only if the solutions c!> + (x,xo,E) are bounded for all x, II 
or equivalently, if and only if c!> ± (x + NL,xo,E ) are bounded 
for all integers N. From (11.8), we see that such bounded 
behavior for large N is possible if and only ifboth eigenval-
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ues, p ± (E), of the transfer matrix T (E) have unit modulus. 
Thus we obtain 

Fact I: EEO" if and only if I p ± (E)I = I, where p ± (E) 
are the eigenvalues of the transfer matrix defined as the two 
roots of 

det[T(E) - prEll] = O. 

Computing this determinant yields 

p2(E) - Ll (E ) p(E) + I = 0, (11.9) 

where Ll (E i-trace of T (E ). The roots are given explicitly by 

p + (E) = [Ll(E) ± [Ll2(E) - 4]1/21/2. (11.10) 

The function Ll(E ) is known as the Floquet discriminant, and 
is central to the entire theory. From (11.9) and (11.10) it fol­
lows that 

p_(E)p+(E) = I, 

Ll(E)= p_(E)+ p+(E), 

so that I p(E) I = I if and only if Ll (E) is real, with ILl (E) 1<2. 
We therefore have 

Fact 2: EEO" iff Ll (E) is real, with ILl (E)I <2. 
Remark. Note that the eigenvalue problem (11.6) with purely 
imaginary u = i·0', w = i 7r is self-adjoint; hence, its spec­
trum 0" is real. On the other hand, when the potentials u and 
ware real, the eigenvalue problem is not self-adjoint. In this 
case, the spectrum 0" need not be real; nevertheless, 0" does lie 
on curves of real Ll (E). 

Next, we change basis from [c!> + (x,xo,E) 1 to one in 
which the transfer matrix T (E) becomes diagonal. This new 
basis is called the Floquet basis and consists of the Floquet 
solutions, [¢ +: (x,xo,E) 1 defined by 

¢ + (x + L,xo,E) = p ± (E)¢ r (x,xo,E ). (11.11) 

The eigenvaluesp ± (E) are called the Floquet multipliers; the 
representation (11.11) clearly indicates that Floquet theory is 
a natural generalization of strictly periodic eigenfunctions 
(p = I) and can be used to develop generic properties of the 
spectrum 0". 

3. Generic properties of the spectrum 0" 

Using these ingredients [transfer matrix T(E); Floquet 
discriminant Ll (E ); Floquet multipliers p ± (E); the basis 
c!> ± ; Floquet basis ¢ ± ], we can summarize the generic 
properties of the spectrum 0" in 
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Theorem 11.1: Useful properties of the spectrum 0": 

(i) EEO" iff I p(E)1 = I 

iff Ll (E) is real and ILl (E) 1<2. 
(ii) The spectrum 0" is continuous spectrum. It consists 

of a countable number of smooth curves, called 
bands of spectrum; the endpoints of these curves (ex­
cept E = 0 and E = 00) are simple periodic and anti­
periodic [t/J(x + L ) = - t/J(x)] eigenvalues, and com­
prise the simple spectrum. 

(iii) E is aperiodic (antiperiodic) eigenvalue 

iff Ll (E) = + 2( - 2). 

(iv) For real potentials u and z.b, the following sym­
metries hold: (a) If EEO", then E *EO".12 
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(b) If E is a periodic (antiperiodic) eigenvalue, then 
E * is a periodic (antiperiodic) eigenvalue. 

(v) For purely imaginary potentials, EEO" =}E = E * > O. 
Proof Part (i) is clear from Sec. 11.2. However, it is in­

structive to iterate formula (11.11) N periods to the left and 
right: 

¢ ± (x + NL,xo,E) = [p ± (E) ]N¢ ± (x,xo,E), 
(Tl) 

It then becomes obvious that for I p ± I =1= I, the correspond­
ing eigenfunctions must blow up either at x = + 00 or 
x = - 00. For I p ± I = I, (TI) shows that the eigenfunc­
tions remain bounded for all x. Since 

Ll (E) = p+(E) + p_(E) = p+(E) + [p+(E)]-', 

it immediately follows from I p + I = I that Ll is real and 
ILl (E)I<2. Part (i) is thereby proved. 

To prove Part (iii), we use (Tl) with N = 1. Clearly 
p = + I( - I) yields periodic (antiperiodic) Floquet solu­
tions; since p = [Ll (E) + [Ll 2(E) - 4] 1 /21 /2, 
Ll (E) = + 2( - 2) determines these periodic (antiperiodic) 
eigenvalues. 

For Part (ii), since 0" is characterized by I pi = 1, from 
(TI) we see that I¢ ± I repeats the same values over each 
period L. It follows that while bounded for all x,¢ ± cannot 
vanish as Ix 1---+ 00 ; thus ¢ ± are generalized eigenfunctions 
and 0" is continuous spectrum. To see that 0" lies in bands, we 
use the basic fact, without proof, that Ll (E) is an analytic 
function of E except for essential sigularities at E = 0, 00 • 

[See the Remark at the end of this section.] By Part (i), 0" is 
characterized by Ll (E) real, ILl (E) 1< 2; Ll (E) analytic then 
yields that 0" lies on smooth curves of Im(Ll (E)) = 0, termi­
nating only at those points where Ll (E) ± 2, 
Ll '(E) = 0, that is, the simple spectrum. Thus Part (ii) is 
established. 

To verify Part (iv), let 

¢(x,xo,E) = (t/Jdx,Xo,E)) 
t/J2(x,xo,E) 

denote a Floquet solution of the eigenvalue problem (11.6) at 
EEO". Simply inserting into (11.6) shows that (t/J!(x,xo,E), 
- t/Jf(x,xo,E))T is a Floquet solution at E * if we assume the 

reality of u(x) and w(x). From the hypothesis EEO",t/J"t/J2 and 
likewise t/J!, - t/Jf are bounded: E *EO". The periodicity (anti) 
follows immediately upon inspection. Part (v) was noted 
,earlier. 

We close this section with a technical representation of 
the discriminant Ll (E), which is extremely useful for display­
ing qualitative features of the spectrum 0". In the basis 
[ c!> + (x,xo,E) J, we have the following 

Theorem 11.2: Eigenfunction representation of Ll (E): 
The Floquet discriminant Ll (E) can be represented as 

Ll (E) = ifJ +,1 (xo + L,xo,E) + ifJ _ ,2(XO + L,xo,E). 
(11.12) 

Proof In this basis! c!> ± (x,xo,E) J, we have 

(
c!>+(X +L,Xo,E)) = T(E) (c!>+(X,Xo,E)). 
c!>_(x +L,xo,E) c!>_(x,xo,E) 
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Setting x = Xo and using the initial conditions for cI> ± at 
x = Xo yields 

cI>+(xo + L,xo,E) = tll(E) (~) + t I2(E) (~), 

cI>-(xo + L,xo,E) = t21 (E) G) + tdE) C), 
from which we find 

[
¢ + I (xo + L,xo,E) ¢ +.2 (xo + L,xo,E )]. 

T(E)= . 
¢ _ .1 (xo + L,xo,E) ¢ _ .2 (Xo + L,xo,E) 

Since L1 (E) = trace of T(E), we have (11.12). 
Remark: Since cI> + (x,xo,E) satisfies an initial-value 

problem with ( 1,0) T, (0, 1) T initial data, it can be established 
by a Picard iteration scheme that ¢ + .1 (x,xo,E ) and 
¢ -.2 (x,xo,E) (and E 112¢ +.2' E 112¢ -,1) are analytic func­
tions of E except for essential singularities at E = 0,00 
(check, for example, the special cases u = w=O). Hence Eq. 
(11.12) shows that the Floquet discriminant L1 (E) enjoys the 
same analyticity properties. 

III. QUALITATIVE INSIGHT INTO THE SPECTRUM a 

The purpose of Secs. II and III of this paper is to con­
nect properties of the spectrum a with the solution of the 
periodic initial-value problem for the sine-Gordon equation. 
Thus far, in Sec. II we have discussed the general nature of 
the spectrum a; here we seek more detailed, qualitative in­
formation about the structure of the bands of a. To obtain 
this information, we imbed a whole-line scattering problem 
into each period. Thereby, we provide simple derivations of 
properties of the Ploquet spectrum (7' based upon better­
known properties from whole-line scattering theory; we then 
interpret the relation of this information about the band 
structure of (7' to solutions of the sine-Gordon equation. 

With these remarks in mind, we specialize to potentials 
u(x),~(x) = ux(x) + ~(x) such that u(x) has sompact support 
(mod21T if u is real) within each period, and w(x) has compact 
support within each period. We call such potentials truncat­
ed potentials. (See Fig. 1.) Although our derivations are re­
stricted to this class of truncated potentials, the specific 
properties which we obtain are in fact more general. We 
emphasize that thi~ clasos contains potentials which. are ~ar 
from the vacuum (u = w=O); thus, our representatIOn glves 

~(x) 

FIG. 1. Truncated potentials. 

~(x) ------­
~(x) __ 
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exact spectral information about sine-Gordon field configu­
rations which contain arbitrary numbers of the basic excita­
tions (periodic trains of kinks and antikinks, breathers and 
radiation). For convenience, we summarize useful whole­
line scattering properties in Appendix A. 

The ordering for the remainder of Sec. III is to first use 
infinite-line scattering theory to arrive at a "scattering repre­
sentation" of the discriminant L1 (E), from which we deduce 
the general qualitative structure of the spectrum; we relate 
this structure to the fundamental excitations of the sine-Gor­
don field; finally, we summarize the spectrum appropriate to 
the sinh-Gordon field. 

Theorem 111.1: Scattering representation o/the Floquet 
discriminrfnt L1 (E): 

Let u(x) and w(x) denote truncated potentials (Fig. 1). In 
terms of the scattering parameter l3 A,A 2=E, 

L1 (A ) = alA )e - ialA}L + alA )eialA }L, lenA;;>O. (111.1) 

Here a(A) A - 1/ 1M and [alA )] - 1 denotes the transmis­
sion coefficient across the basic period ofthe potentials, with 
the potentials continued beyond this basic period by 

e'u1xl_l, w(x)=O outside [xo,xo + L ]. 

For A real, representation (IIU) reduces to 

L1 (A) = 2Ia(A)1 cos(a(A)L - ph [a(A )] I, A real, 
(III.2) 

where ph[a(A )] denotes the phase of alA ). 
We present the proof of Theorem III. 1 in Appendix A 

so as not to delay the exposition. Here, we merely summarize 
those properties of alA ) which are needed to use the scatter­
ing representation of L1 (A ). 

Theorem 111.2: Facts/rom whole-line scattering theory: 
(i) [alA )] - 1 =transmission coefficient. 

(ii) 
as A~ 00 ,lenA;;>O 

{
I 

a(A)~ 0 0 

exp[(i/2)(u( + 00) - u( - 00))] as A~. 

(iii) la(A W ± Ib (A W = l,A real. Here + is for real u,w 
and - is for purely imaginary u,w. 

(iv) a (A) ) = 0 if and only if A) is a bound state eigenvalue, 
j = 1,2, ... ,N. For purely imaginary potentials u = io/,;, 
w = i 'Jr, no bound states exist. For real potentials, these 
bound states occur either on the positive imaginary A axis (in 
which case they are associated with kinks), or in pairs 
(A

j
, - A j) (in which case they are associated with breathers). 

(v) With real potentials, alA ) can possess mUltiple zeros. 
In this case, small perturbations of the potentials will remove 
this degeneracy. 
We summarize these properties in Fig. 2 in both the A and E 
planes. 

We now deduce from the scattering representation of L1 
(Theorem III. 1) a series offacts about the spectrum (7'. These 
facts will be phrased in the E plane. We begin with 

Fact 1: For real potentials the positive real E axis (E > 0) 
is continuous spectrum, with no gaps in a on the positive real 
E axis. (This part of the spectrum is associated with radiation 
in the sine-Gordon field.) 
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(a) 

E 

(b) 

A 
o 

A-plane 

E-plane 

real A '::) radiation 

EO' E1, E2 ::::0 Kinks (Antikinks) 

* E
3
, E3 ::::0 Breather 

E > 0 ::::0 Radiation 

FIG. 2. Spectrum u for whole-line problem with vanishing boundary 
conditions. 

This fact is obvious from the scattering representation 
of L1. For E> 0, or equivalently for real A., 

la(A. W + Ib (A. W = 1~la(A.)1 < 1~1L1 1<2. 

Since L1 is real and always bounded in magnitude by 2, Theo­
rem 111.1 establishes Fact 1. 

Next, consider the special case ~(x) = w(x)=O. In this 
case of zero potentials, the scattering representation of L1, 
together with the total transmission [a(A. ) = a(A. )==1] proper­
ty of zero potentials, gives 

L1 (A. ) = e - ia(A.)L + eia(A. )L, 

where ImA. >0, a(A. )==..1.. - 1I16A.. When A. = - A. ., 

L1 (A. ) = 2 cOSh[(IA. I + _1_)L ]; 
161..1.. I 

when A. is real, 

L1 (A.) = 2 cos [a(A. )L ]. 

From these formulas we deduce (see Fig. 3) 
Fact 2: For ~(x) = w(x)==O, 
(a) 1L1 (E )I~oo exponentially as IE I~oo ,E£(O, 00). 

(b)ForE < 0,..::1 (E ) isreal withL1 (E )~oo exponentially as 
E~,oo. 

(c) For E > 0, the oscillations of L1 (E) always reach ± 2; 
all periodic and antiperiodic eigenvalues are double; 
L1 (E) -2 cos(E 1/2L) as E~ + 00, and its graph 
appears very regular near E = + 00. 

L1 (E)-2 cos(LI16v'E)asE~+, 
and its graph appears very dense near E = O,E> 0. 

For arbitrary real potentials (~,w#O),L1 (E) asymptotes to 
these formulas as E~O, 00 , with the following exception near 
E = 0. First, there is a possible phase shift of 1T as 
E~O,E > 0. With the "charge" M defined ~(xo + L ) 
= u(x) + 2M1T, the phase shift is zero for M even and 1T for 

M odd. That is, for general potentials ~,w, 
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L1 (E)-( - I)M2 cos(LI16v'E) near E= O,E> 0, 

L1 (E) - 2 cos(E 1/2 L) near E = + 00 ,E real. 
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.... J 

(e) 

FIG. 3. Graphof..:1 (E)vsEreal. u(xo + L) = u(xo) + 2M1T,(a)Meven;(b)M 
odd. 

Second is the effect of the "charge" of ~(x) on the graph near 
E=O,E<O: 

lim L1 (E) = {+ 00, M even. 
E-.(J - 00, M odd 

With these remarks, we can sketch L1 (E) vs E real (Fig. 3). 
From the scattering representation for real potentials, 

we have found the entire positive real E axis is continuous 
spectrum. There is an interesting ramification of this fact. 

Fact 3: For real potentials, the spectrum u has spines 
coming off the positive real E axis (see Fig. 4). 

(a) A-plane 

E-plane 

FIG. 4. Spines in the Floquet spectrum u. 
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The proof of Fact 3, a rather surprising result in sine­
Gordon spectral theory, is an elementary exercise in com­
plex function theory. 14.15 The gist of the argument is as fol­
lows. Refer to the graph of..::1 (E) vs E real, E> 0 (Fig. 3), and 
consider a local maximum (Eo,..::1 (Eo)), where 1..::1 (Eo) 1 < 2 and 
..::1 '(Eo) = O. [Remember..::1 (E) is real for E real and the spec­
trum o-lies on curves of 1m..::1 (E )==0, with 1..::1 1 < 2.] From a 
more general perspective, though, ..::1 (E )=..::1 R + i..::1[ is an 
analytic function of the complex variable E = ER + iE[. 
Thus, ..::1 R (E R ,E[) is harmonic and Eo must be a saddle point 
on the surface z=..::1 R (ER ,E[). Thus, leaving Eo along the real 
E axis one descends the saddle along a curve of steepest de­
scent. But since Eo is a saddle point, there is another direc­
tion off the real axis into the complex E plane which is a 
steepest ascent path. (In fact, the curve is determined by 
..::1[=0.) Then by continuity (since 1..::1 (Eo) 1 < 2), this curve 
gives a short band of spectrum, a spine. Clearly the same 
holds true at a local minimum Eo, where 1..::1 (Eo) 1 < 2. 16 

AsE-D, + oo,thebehaviorof..::1 (E)showsthelengthof 
these spines must asymptote to zero. They tend to be very 
short anyway; this seems intuitively clear from the above 
arguments since a spine is a steepest descent (ascent) path of 
..::1 R and so should exceed 2 in magnitude very quickly (for 
moderate period L ). In fact, Eq. (111.1) for..::1 (A ),lmA >0, 
shows 1..::1 (A ) 1 grows exponentially as a function of ..1[>0: 

..::1 (A ) = alA )e - ia(,,( IL + a(A )eia(,,( )L, 

from which we have 

(111.3) 

This completes our discussion of the part of the spectrum 0-

which is connected to the positive real E axis. 
For real potentials, there also exists parts of the spec­

trum which are not connected to the positive real E axis. 
These are the periodic generalizations of kinks (antikinks) 
and breathers. From the exponential growth of..::1 (A ) for 
A[ > 0, (111.3), we realize any such bands of spectrum in the 
upper-half A plane, or off the positive real E axis, are very 
short and sparse. They originate from a different type of 
oscillation in ..::1 (A ), coming from zeros of alA ), rather than 
from sinusoidal oscillations of exp[ia(A )L ]. 

Assume we have some curve..::1[ =0 in the upper-half A 
plane. If there is to be any spectrum along such a curve, we 
must have - 2<..::1R <2. However, from the exponential be­
haviorof..::1 (A ) for A[ > 0, Eq. (III.3), 1..::1 1 = I..::1R 1 will usually 
exceed 2 unless alA ) has a zero very near the curve. The zeros 
of alA ) are finite in number and occur only at the bound states 
of the truncated potentials ~(x ),~(x). Usually zeros of alA ) are 
isolated and, 1..::1 (A )1 will exceed 2 very quickly. Thus, there 
will be a short band of spectrum near the zeros of alA ). 

These facts, together with the symmetries of Theorem 
(11.1), yield the rather generic spectral profile of Figs. 5. 
(Compare Figs. 2.) 

As the period L becomes infinite, the spines go away 
and the entire positive real E axis remains continuous spec­
trum (radiation in the sine-Gordon field), the conjugate pair 
of bands in the E plane shrinks to conjugate poles (a breath­
er), and the three bands on the negative real E axis shrink to 
poles and describe three kinks (or antikinks). [Refer to Theo-

1254 J. Math. Phys., Vol. 23, No.7, July 1982 

.. .I ........ L J L .. + 

(a) A-plane 

.,., .at M 

(b) 
E-plane 

FIG. 5. Generic profile of the Floquet spectrum CT • 

rem 111.2, Part (iv).] Thus, Figs. 5 collapse to Figs. 2 in the 
infinite-period limit. Based on these whole-line analogies for 
the limiting configurations, we see the conjugate pair of 
bands must be related to trains of breathers while the bands 
on the negative real E axis correspond to trains of kinks or 
antikinks. 

Fact 4: For real potentials, the eigenvalue problem (11.2) 
is not self-adjoint. This can lead to rather eccentric spectral 
properties; for example, alA ) can have multiple zeros. How­
ever, such properties do not appear to be generic; arbitrarily 
small changes in the potentials remove them. 

This completes our use of the "scattering representa­
tion" to obtain properties of the spectrum 0- for real poten­
tials. We now turn to purely imaginary potentials, which are 
appropriate for the sinh-Gordon field. In this case, the spec­
trum 0- is much simpler because the eigenvalue problem 
(11.2) is self-adjoint. We summarize its properties in 

Fact 5: For purely imaginary potentials, the spectrum 0-

consists of bands on the positive E axis, separated by gaps. 
These gaps on the real axis become very narrow as 
( V E - 1/16 V E )----+00; that is, as E----+O+ and as E----+ + 00. 

These properties of the spectrum for purely imaginary 
potentials are established from the scattering representation 
of..::1 (E), with arguments which exactly parallel the case of 
real potentials. The only difference is the sign in 
la21 = 1 + Ib 21 (Theorem 111.2). The lower sign results in 
gaps on the positive real axis; the upper sign leads to spines in 
the spectrum. 

Notice that the spectrum for purely imaginary poten­
tials is directly analogous to the well-known spectrum of 
Hill's equation. This simplicity of the spectrum for self-ad­
joint linear problems should be contrasted with the compli­
cated spectral structure of the non-self-adjoint linear prob­
lem for the real sine-Gordon equation. 
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IV. FINITE DEGREES OF FREEDOM 
1. 2N invariant simple spectra (E j }; determination of a 
Riemann surface 

Material in previous sections indicates that the elemen­
tary excitations of the periodic sine-Gordon field consist of 
trains of kinks, trains of breathers, and trains of radiation. 
(Of course, the distinctions may not be as well defined as in 
the whole-line case.) For the remainder of the paper, we seek 
detailed qualitative and quantitative connections between 
the spectrum (T and the physical characteristics of these basic 
excitations, such as frequencies, dispersion relations, and 
amplitUdes. First, we use the invariant spectrum (T to fix a 
Riemann surface; then we use this Riemann surface to con­
struct special solutions which consist of a finite number of 
elementary excitations. These special finite degree of free­
dom solutions admit several equivalent representations, 
each of which has its own utility. In this section we construct 
two of these [the "~-representation" ofEqs. (IV.3) and (IV.4) 
and the "theta function representation" of Eq. (IV.20)] and 
discuss their properties. The Riemann surface enters these 
constructions as follows. 

We begin by seeking all solutions of the sine-Gordon 
equation with a prescribed spectrum (T. Formulas such as 

p(E) =!(..1 (E) + [..12(E) - 4]1/2) 

for the Floquet multiplier pIE ) indicate that such potentials 
will be fundamentally related to the analyticity structure of 
the function 

[..12(E) - 4]'/2 = [(..1 (E) - 2)(..1 (E) + 2)]1/2. 

This function has branch points at E = 0,00, 1M and at the 
simple periodic and antiperiodic eigenvalues (E j l. Since the 
spectrum (T consists of bands that terminate precisely at the 
branch points of (..1 2 - 4) 1/2, the branch cut structure of 
(..1 2 - 4) I 12 can be chosen to coincide with the spectrum (T.19 
Thus, the appropriate function theory of the sine-Gordon 
equation stems from the two-sheeted Riemann surface of 
[..1 2(E) - 4] I 12: two copies of the E plane connected along 
cuts between branch points ( E) l (including 0, 00 ) consistent 
with the constraints of Theorem 11.1. For example, for real 
potentials, 

E) a branch point ~E t a branch point. (IV. I ) 

Since there are, in general, infinitely many simple periodic 
and antiperiodic eigenvalues, [..1 2(E) - 4]' 12 will have infi­
nitely many branch points, leading to a Riemann surface of 
infinite genus. 

However, the special case of exactly 2N simple zeros of 
..1 2(E) - 4 provides sine-Gordon fields which contain a finite 
number (N) of basic excitations. In that case an infinite prod­
uct expansion yields (a derivation in Paper II) 

[..12(E)-4]1/2=C II (1- E)II(I- E)) 
J>2N+ I E) )<0 E 

[

2N + I ] 112 

X k:U1 (E -Ek ) ; 

th.e number of branch points is finite, leading to a finite genus 
Riemann surface. (This case of N degrees of freedom is po­
tentially useful in applications. For example, consider a 
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study of the sine-Gordon equation with arbitrary periodic 
initial data. First, spectral analyze the data to determine the 
structure and location of the spectrum (T, Next, retain only 
the "most dominant" bands 17 to obtain a finite-band ap­
proximation of (T. This finite-band spectrum then yields an 
approximation to the full wave in terms of a finite number of 
basic sine-Gordon excitations.) 

With this motivation, we pose the finite band inverse 
problem: the strategy is to prescribe (2N + 1) branch points, 
(Ek ,k = 1, ... ,2N + 1 J, consistent with the symmetries, and 
then construct the most general solution of the sine-Gordon 
equation which yields this simple spectrum. For conve­
nience, we summarize these symmetries: 

E2N + 1=0, 

Real poten tials~ (i) E k t [ 0, 00] and 

(ii) Ek = Et <0 or 

Ek occur in conjugate pairs 

Imaginarypotentials~ER =Et>O. (IV.2) 

With the simple spectrum (E k l fixed, consider 
2N+ I 

R2(E)= II (E-Ed 
k~1 

and its two sheeted Riemann surface. 
(For the case N = 3, this Riemann surface may be real­

ized from the cut structure depicted in Fig. 6. Notice the 
branch cuts need not, in fact often do not,20 coincide with the 
spectrum (T; however, they could be so chosen.) In the next 
sections we show that the general sine-Gordon solution with 
this prescribed N band spectrum is an "N-phase wave train"; 
these wave trains can be represented in terms of N variables, 
!f-lI, ... ,f-lN J, each of which moves on the Riemann surface 
just specified. 

2. Wrepresentation of the N-phase wave train 

We now construct a representation of the N-phase wave 
train. We follow an approach of Date,21 which is very 
straighforward and far easier than alternatives in the litera­
ture. First, we state the representation and then detail its 
construction. 

Theorem IV.I: ~-representation o/the N-phase wave 
train: 

With the simple spectrum fixed as 
2 1s

) = (E k ,k = 1,2, .. . ,2N j, the general N-phase sine-Gor­
don wave train admits the representation 

u(x,t) = iln[ Cf( f-l/(x,t))/p 1/
2], (IV.3) 

o 

E-plane 

FIG. 6. Sample cut structures for genus N = 3. 
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where [,ul (x,t) I satisfy the ordinary differential equations 

2{ 1 + 16~ 1/2 }l,uj )[DII (PI - E j )r2 

(P/)x = . (IV.4) 

II(p1 - ,uj) 
dol 

Here P = IlEk and E2N + I =0. 
We will refer to this representation as the "~-represen­

tation of u(x,t )." It constructs the general N-phase sine-Gor­
don wave from the following data: (i) the simple spectrum 
~}'I = I Ek I [which, along with 0, 00, are the branch points of 
R 2(E ) = (Il(E - E k))]' (ii) N degrees of freedom [,uj (x,t ) I 
[which reside on the Riemann surface of R (E I], (iii) Nbranch 
determinations [R(P/)= [Il(P/-Ej )]1/2forl= 1,2,oO.,NI 
[which fix the Riemann sheet on which,ul initially resides], 
and (iv) the branch determination of P 1/2 = (IlEk )1/2. We 

F = 
x (

2i(VE +e~iu/16 vEl 

2i(vE +e,u/16 vEl 

i(vE +e'u/16 vEl 

- iw/2 

o 

or, in component form, 

f =i(vE +e,u/16vE)g+i(vE +e- lu/16vE )h, 
" 

g = -i(wl2)g+2i(vE+r'u/16vE)f, (IV.6') 
x 

h" = i(wl2)h + 2i(vE +e,u/16 vE)f. 

The verification of this lemma follows by direct calculation. 
We emphasize that system (IV.6) is compatible ifand only if 
the potentials u and w satisfy the sine-Gordon system 

u" +u, =w, 

Wx - w, = sinu. 

This squared eigenfunction system is fundamental to 
the theory of the sine-Gordon equation (see Paper III in this 
series). As a system of ordinary differential equations, it pos­
sesses a "first integral." 

Lemma (Basic constant of motion): Let (f,g,h ) solve the 
squared eigenfunction system (IV.6). Then 

P (E) f2(X,t;E) - g(x,t;E )h (x,t;E) 

is independent of both x and t. 
The proof that P is a constan t of motion is immediate 

from the component form of the system, (IV.6'). Recall that 
we are working on an inverse problem, the construction of an 
N-phase wave from spectral data. The simple spectrum 
Lis) = I Ek ,k = 1,oO.,2N I enters into the construction proce­
dure through the basic constant of motion P (E ). Fix 2N com­
plex constants IEk I consistent with the constraints (IV.2), 
and consider a polynomial form of the constant P (E ), 

2N 
P (E) = P(x,t;E) - g(x,t;E )h (x,t;E ) = II (E - E k ). 

k ~ I 

(IV.7) 

To achieve this polynomial P (E) one seeks squared eigen­
function solutions (f,g,h ) of (IV.6) which themselves are 

1256 J. Math. Phys., Vol. 23, No.7, July 1982 

remark here, and will discuss at the end of this section, that 
problems exist in imposing the reality constraints on this 
representation. The constraint of purely imaginary poten­
tials (sinh-Gordon) is easy; that of real potentials (sine-Gor­
don) is difficult. 

Next, we derive this representation through a collection 
ofiemmas, which serves to outline the construction. Instead 
of using the Takhatajian-Faddeev linear system to construct 
the sine-Gordon wave train, we employ an equivalent linear 
system for quadratic eigenfunctions [ f,g,h I, 
f= - i(¢)t/J2 + ¢>1¢2)12, g-¢I¢>I' h - ¢2t/J2' (IV.S) 

where both", and c!> denote solutions of the Takhatajian­
Faddeev linear system (I1.3). We have 

Lemma (Squared eigenfunction system): The vector 
function F-(f,g,h ) T satisfies the linear system 

i(vE +e 0,u/ 16 VEl) F 

iw/2 

Ipolynomial in the eigenvalue parameter V E, 

(IV.6) 

I.\' ..\' ,y 

f= - L 1;£1, g = L gj£1, h = L hjEj. 
vEj~1 j~O j~O 

(IV.8) 

We emphasize the existence of a solution (f,g,h ) to the 
squared eigenfunction system forces the potentials (u,w) to 
satisfy the sine-Gordon equation. The additional require­
ment (beyond existence) thatf,g,h are polynomial in V E 
further constrains the sine-Gordon solution. It turns out 
that this polynomial constraint selects wave train solutions. 

Lemma (Existence of squared eigenfunctions which are 
polynomial in V E): Polynomial solutions of linear system 
(IV.6) which have the form (IV.8) exist if and only if the 
potentials u and w satisfy 

w = 4j,,;/g/V. 

In this case, the coefficients satisfy 

(IV.9a) 

(IV.9b) 

(1;)x = igj - 1 + -k- eiu gj + ihj - 1 + -k- e - ;uhj , 

( ) 2 · I' - i - ;u I' 
gj. = lJj+ -e Jj+1 

x 8 , 
(IV. lOa) 

(h j )" = 2i1; + feIU1;t-1 + fWh j , 

, 
(j = 0, 1,oO.,N) together with the constraints 

fo f'V+ 1=0, 
(IV. lOb) 

gN +hN=O. 

To establish this existence lemma, we insert the polyno­
mial ansatz (IV.8) into linear system (IV.6). System (IV. 10) 
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for the coefficients I Jj ,g j ,h j I results, from which the neces­
sity of formulas (IV.9) follows by minor manipulations. As 
for the sufficiency, one replaces u and w in (IV.lO) by formu­
las (IV.9). In this manner, (IV.lO) becomes a closed system of 
nonlinear ordinary differential equations. The existence of a 
solution for this nonlinear system is elementary. 

Several remarks are appropriate at this stage. First, 
Eqs. (IV.lO) yield 

gN = - hN = const, 

goho = const. 

(IV.lla) 

(IV.llb) 

Without loss of generality, we choose gN = + 1. Then the 
polynomial constant P (E) takes the form 

PIE) = f2 -gh = (-g NhN)E2N + ... + (-goho)EO 

from which we obtain 
2N 

gN=I, hN= -1, goho = - IIEk. 
I 

(IV.12) 

These formulas are useful to keep in mind during the con­
struction process. 

Constraint (IV.9) is crucial. It gives a formula for the 
potentials u and w in terms of the coefficientsg O,hO,gN,hN. 
Next we show these potentials have N degrees offreedom, 
where N is the degree of the polynomials g and h. 

Lemma (u has N degress offreedom). 
If(f,g,h ) admit polynomial representations (IV.8), then 

[N /(2N )1/2] u(x,t) = i In I1 f.1j(x,t) I1 Ej , 
j - I j - I 

(IV.I3) 

where the N degrees of freedom 1f.1I(x,t ), ... ,f.1N (x,t) J are the 
zeros of the squared eigenfunction g (x,t;E ), 

N 

g(x,t;E)= II [E-f.1j (x,t)], 
j~1 

and the 1 Ej J are the zeros of the constant 
PIE) = F -gh = II(E-Ek)· 

(IV.14) 

To prove this lemma, one uses (IV.9a), (IV.I2), and 
(IV.I4): 

Next, we derive a system of differential equations for the 
variables !P 1,···,f.1N)· 

Lemma (Dynamical system for the ~ variables): 
Let (f,g,h ) admit polynomial representation (IV.8), with 

g (x,t;E) = I I [E - f.1j (x,t)]. Then 

f.1',x = 

2i (1 + l6PII/2 IIf.1j) [21i I !PI - Ek)]"" 
____________ ~J~~~' __ ~~k_~~I ________ ~ (IV. 15) 

To verify that the N zeros of g, If.1j J, satisfy dynamical 
system (IV, IS), one begins with Eq. (IV.6b') for g, 

1257 J. Math, Phys" Vol, 23, No, 7, July 1982 

g = -iw g+2i(VE +~)f 
x 2 16 vE 
t 

Inserting the product representationg = II(E - f.1j) into this 
equation yields 

[ II (E - Ilj) H E = ILl 

= 2i [!PI )1/2 + e - iu /I6!PI )1/2 ]f(x,t;,ul). 

The potential e - iu is known in terms of If.1j I by (IV.13). To 
findf(x,t;IlI)' one uses 

2N 
P!PI) = II !PI - Ek) = F - gh IE~ILI = f 2(x,t;,uI)· 

k~1 

These expressions yield (IV.IS). 
This completes the proof of the "~-representation of 

u." We emphasize that the wave train u is constructed from 
the following data: (i) the simple spectrum I Ek I, (ii) N 
branch determinations I R !PI) = [II!p, - Ek) r/2, 
1= I, ... ,N I, (iii) the branch determination of 
P 1/2 = (IIEk )112, and (iv) the N dynamical variables If.1j I 
which satisfy dynamical system (IV.IS). Actually, this same 
data fixes the potentials u and w, as well as the polynomial 
squared eigenfunction (f,g,h ). For example, the coefficients 
fj in the polynomial squared eigenfunction fare easily 
shown to satisfy the system 

where 

f!PI)l!PI)1/2 

f!Pz)l!P2) 1/2 

,.t'~ - I 

f.1i- 1 

f!Pj) = [kUI!Pj-Ek)r2
=[p!Pj)]1/2. 

(IV.16) 

By inverting this linear system, the data fixes the squared 
eigenfunction f 

The preceding verification of the wrepresentation of 
the N-phase wave consists entirely of easy manipJllations. 
There remains a very difficult question concerning the global 
nature of the coordinates 1f.11" .. 'f.1,\' I. As it stands, the ~­
representation generates complex potentials u and w; how­
ever, we are only interested in potentials which are either 
real or purely imaginary. Under such reality constraints, 
what is the topological nature of the manifold of N-phase 
waves? Is this manifold coordinatized globally by the If.1j I 
variables? 

For the case of purely imaginary potentials (sinh-Gor­
don), the answers are known. In this case, constraints (IV.2) 
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force the constants (Ek ,k = 1, ... ,2N I to be real and positive. 
We order them as 0 <EI <E2 < '" <E2N < 00. Then choose 
f-ti real, positive, and 

f-tiE[E2i-I,E2i]' j= 1,2, ... ,N. (IV. 17) 

Under the flow (IV.4), eachf-t i travels on one sheet of the 
Riemann surface from E2i _ 1 to E2i' changes sheets, then 
travels back to E2j _ 1 again. Topologically, this path is a 
circle. Ifwe leLil N denote the manifold of purely imaginary 
N-phase waves with fixed simple spectrum, 

JI N= {:::~~I u· = - U, w· = - w; LIs,}, 
then JI N is an N-torus parametrized by (f-tI,··.,f-tN I which 
lie in the "gaps" (IV.17). This case is exactly analogous to 
that of Hill's equation. (See the preliminary section of Ref. 4 
and recall that for purely imaginary potentials, the Takhata­
jian-Faddeev linear eigenvalue problem is self-adjoint.) 

For real potentials (sine-Gordon), the situation is not 
well understood. Consider the manifold of real N-phase 
waves with fixed simple spectrum, 

JI N={U:R_R,W:R_RIL
ls, 

= (E 1,···,E2N I}. 
Here, the constants E j must satisfy the reality constraints of 
(IV.2); that is, either E j are real and negative or they occur in 
conjugate pairs. Locally the If-t j I (now complex) coordina­
tize the manifold JI N; however, except in the single-phase 
case (N = 1), their global properties are unknown. For exam­
plef-tl' although complex valued, has only one real dimen­
sion, yet it does not live on a fixed complex curve which is 
independent of (p,2,···,f-tN)· Moreover, the f-t i variables need 
not be distinct, but can collide in pairs. In summary, in the 
case of real potentials, it is not certain that the manifold./I N 

is globally a torus; nor is it clear that the manifold JI N can 
be globally coordinatized by If-t 1,· •. ,f-tN I· In later sections, we 
investigate the"" coordinates for N = 1 and N = 2 in some 
detail. 

3. 8-function representation of the N-phase wave train 

In the last section, we developed the "",,-representation 
of the N-phase wave train." This representation clearly 
shows that the wave train has N degrees of freedom 
If-t " ... ,f-t.v l. but the"" variables satisfy a complicated dyna­
mical system (IV.4). Fortunately, this flow can be trans­
formed to straight-line motion by exploiting the fact that 
each variable f-t j resides on the Riemann surface of 

2.'1+ I 

R lIE ) = IT (E - Ej ). (IV. IS) 
j~ I 

In this section we use calculus on this Riemann surface to 
replace the variables 1f-tI,oo.,f-tN } by N "phases," each of 
which is linear in space (x) and time (t ). The explicit formula 
for the wave train U in terms of these N phases involves theta 
functions of N variables. Since this "e-function representa­
tion of u" is not central to our discussion, we refer the reader 
to Ref. 20 for most details. To state the results, we first de­
scribe the appropriate cycles and differentials on the under­
lying Riemann surface which are used to both integrate the "" 
equations (IV .15) and define the e-functions of N variables. 
(The integration of the "" equations introduces the phase var-
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iables, and the e functions are used to express the"" varia­
bles, hence the potentials, in terms of these phases.) 

On the Riemann surface of R 2(E) = TIr(E - Ek), 
E2N + 1 ==0, we introduce two families of closed curves 
(which form a basis for contour integration and are typically 
referred to as "canonical cycles"), {a l ,a2, ... ,a N } and 
(b 1,b2,oo.,bN }. We illustrate these a-b cycles for the special 
case N = 3; for the cut structure of Fig. 6, the precise paths 
are depicted below in Fig. 7. (See Ref. 22 for such matters.) 

Next, introduce N differentials (abelian differentials of 
the first kind) 

Cv1E N
-

1 + ... + CYN 
dUy = dE, v = 1,2,oo.,N, 

R(EI 
(IV.19a) 

where the matrix of constants C = (Cyll ) is fixed in terms of 
{ E j I by normalization conditions 

f dU" = 8"1" 
",. 

(IV.19b) 

From these differentials, define the "period matrix" 
B = (Bill') by 

(IV.19c) 

First we use the differentials d Ul' to linearize the "" 
equations. Introduce the change of variables 

T.± =t ±x, 
in terms of which Eqs. (IV .15) simplify to 

I 

I 

\ 
\ 

__ upper sheet 

- - - - lower sheet 

a-cycles for N = 3 

b-cycles for N 0= 3 

FIG. 7. Cycles for Genus N = 3. 
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Then, in terms of the differentials d ~, (IV.19a), define abe­
lian integrals of the first kind, Ij -Ij (p,I, ... ,IlN)' by 

Nfl-'· N N fl-'· EN-I 
IAL)==- L 0 d~ = - L ejl L 0 --dE. 

k = I 1-'. 1 = I k = I 1-'. R (E) 
(IV.2la) 

Next, compute derivatives of Ij (JL) with respect to T ± ' and 
make use of (IV.20b): 

alj(JL) = _ ± c.
1 
± Il~ -I all k 

aT ± 1=1 J k=1 R(p,k) aT ± 

( )
(~) 

N N IT 11m 
- - ~ (2'e ) ~ m~k IT 
- I~I I jl kL:: I l6P 1/2 n# (p,k -Iln) 

The right-hand side is independent ofJL; thus, Ijlp) flows lin­
early with T ± . This observation is immediate for N = 1. We 
illustrate the N = 2 case: 

alj~I:2) _ 2iejl (ktl Ilk ) 

IT (p,k -1111) 
lI#k 

_ 2iej2 ( ± 1 ) 
k = I IT (p,k -1111) 

I!#k 

- 2iejl (1) - 2iej2 (0) 

- 2iejl · 

Similarly, 

alj (p, 1,112) 2iej2 
l6P 1/2' 

These two expressions are trivially integrated to yield 

I . [ 1/2 0 j(p,I,1l2) = -21 ejlT+ - (ej2 /l6P )L] +Ij 

or, in terms of x and t, 

Ij = -2i [(ejl + 16;21/2 ) x + (C;I - l6;21/2)t] +~. 
Thus, we have explicitly reduced the x,t dependence to two 
phases II and 12; the space and time flows have been linear­
ized. The above computation carries through in the same 
manner for general N with the use of Lagrange interpolation. 
The result of that analysis is 

Ij (p,I, ... ,IlN) = - 2i [(ejl + (- l)NejN)x 
l6P 1/2 

( 
( - l)N+ lejN )] 0 

+ ejl + l6P 1/2 t + Ij . (IV.2lb) 

There are N phases in the potentials u,w. Mathematically, 
Eqs. (IV.2l) for j = 1, ... ,N represent the "Jacobi inversion 
problem": given the phases Ij , find the unknowns 11 1,· .. ,IlN· 
This classical problem is solved in terms of the zeros of the 
Riemann theta function. This explains the role of 8 func­
tions in the exact, closed-form, periodic solutions of sine­
Gordon and other nonlinear evolution equations integrated 
by the inverse spectral transform. (We suggest the reader 
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consider the inversion problem for N = 1.) We turn next to 
display these exact N-phase solutions in terms of 8 
functions. 

From the ingredients in (IV.19), the N-dimensional 8 
function is constructed: 

8 (P;B) = L exp [1Ti(B k,k) + 21Ti(P,k)l, 

P = (P I ,P2'''''PII/)' 

(We remark that as defined, 1mB is positive definite, which 
yields very rapid convergence for these series-an advantage 
of the representation to follow.) The solution of the Jacobi 
inversion problem in terms of 8 (P;B ) then yields 

( ) -2'1 [8(I(X,t) + ~;B)) u x,t - In, 
8 (l(x,t );B ) 

where 
I(x,t) = (/ 1,,,,'/ N)' 

Ij(x,t) = - 2i{[ (ejl + 16~ 1/2 ejN ) x 

+ (ejl - 16~ 1/2 ejN )t ]} + Ij(O,O), 

2N 
E2N + 1 0, P= II E k , 

k=1 

1 + !=(/I + !J2 + !""'/N + !). 

(IV.22) 

We refer to Eq. (IV.22) as the "8-function representation of 
u(x,t )"; notice that it explicitly displays the sine-Gordon so­
lution u(x,t) as a multiphase wave train. That is, it has N 
phases, [/v(x,t ),v = 1, ... ,N)' each o/which depends linearly 
on x and t. The wave form is parametrized by the fixed sim­
ple spectrum };(S) = [Ew .. ,E2N J and the N constants 
II (0,0), ... ,/ N (0,0). 

Any choice of these parameters will yield potentials u 
and w which (i) solve the complex sine-Gordon equation, (ii) 
contain N degrees of freedom, and (iii) possess a Takhata­
jian-Faddeev spectrum which lies inN + 1 bands and termi­
nates at [E I ,E2, ••• ,E2N ,0, 00 J. If, in addition, the points [Ej J 
satisfy the constraints specified in Eqs. (IV.2), and the real 
part of the constant 1(0,0) is chosen properly, then the poten­
tials will either be real or pure imaginary. In general, these 
potentials will be quasiperiodic in space and time with N 
spatial periods and N temporal periods. To obtain periodic 
potentials, the 2N points [Ej J must satisfy (N - 1) con­
straints, which ensure the N spatial periods are commensur­
ate. An additional constraint is needed to ensure fixed period 
L. The inverse problem as posed (given the simple spectrum 
[Ej J, construct the potentials) naturally yields quasiperiodic 
potentials. In some applications, such as modulating wave 
trains, this quasiperiodic class of waves is most natural; in 
other instances, such as finite-length Josephson transmis­
sion lines, the periodic constraints must be imposed. 

These representations of the wave u(x,t) will be oflittle 
use until the connection between the input parameters 
[ E I'''' ,E2N J and the physical characteristics (such as wave­
numbers, frequencies, amplitudes, and periods) is clearly un­
derstood. In the next section, we discuss this connection for 
sine-Gordon waves in great detail for the N = 1 case; in the 
final section, we consider a special class of N = 2-phase sine­
Gordon waves. 
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V. TRAVELING WAVES (SINGLE-PHASE WAVES) 

In tl)is section we consider single-phase traveling waves 
which may be constructed by elementary means. The goal of 
this section is to relate these well known families of traveling 
waves to the less familiar single-phase (N = 1) Ii- and 8 repre­
sentations. We restrict ourselves to real (sine-Gordon) 
waves. The sinh-Gordon case follows similarly. 

1. Reduction to N = 1 

The single-phase wave takes the form 

u(x,t) = 2iln[ 8(/(x,t) + ~;B) ], 
8(1(x,t );B) 

(V.la) 

where the single phase I (x,t) is given, with P = E1Ez, by 

I (x,t) = - 2ie [(I + l/16P I/Z)x + (1 - l/16P I/Z)t 1 

+ 1(0,0). (V.lb) 

From this representation we see that the single-phase sine­
Gordon solution is a traveling wave; that is, a function of x 
and t through only the one linear combination (KX + cut ), 

with "phase velocity" U given by 

U=!:!... = 16PI/Z-l 
16p I /Z + l' (V.lc) 

K 

u2 < 1" (E
1

E
2

)1/2 > 0 

1reft' \ 
E > 1 

~ 

a 
Kink Train 

1ref'f 

E = 1 

~ 
x 

-211 

b 

Kink (Soliton) 

---+--+-t---- x 

lEI < 1 ~
---_1I+- -

_11 

-1I-'IIu --- ------

Pure Osci~latory State 

FIG. 8. Potential energy diagrams and corresponding solutions (N = I). 
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2. Direct ansatz method to display traveling waves 

Once we realize the N = 1 solution u(x,t ) is a traveling 
wave, there is a direct and elementary approach which cata­
logues all single-phase traveling wave solutions of the sine­
Gordon equation. One merely seeks a solution in the form of 
a traveling wave: 

u(x,t) = UT(KX + UJt). 

Inserting this ansatz into the sine-Gordon equation yields an 
equation for U T as a function of the "phase" () = KX + UJt, 

(UJz - KZ)U;: = - sinu r , 

where / denotes d Ide. This "effective oscillator" equation 
may be integrated once to obtain the energy equation 

!(KZ _ UJZ)(U~)2 + Veff = E, if U 2 = UJ 21Kz < 1, 
(V.2a) 

~(UJz-K2)(u~f+veff=€= -E, if U 2 =UJ2/K2> I, 
(V.2b) 

where Veff and Veff are the effective potentials given by 

Veff(u) = COSU, 

veff(u) = - cosu. 

The potential energy diagrams are sketched in Fig. 8. 
As we catalog all traveling waves, we first classify waves 

as having phase speed IU I = IUJIKI, which (i) exceeds, or (ii) is 

'if 
eff 

1reff 

u
2 

> 1 " (E E )1/2 <' 0 
1 2 ' 

Kink Train 

Kink (Soli ton) 

Pure OSCillatory State 
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exceeded by, the characteristic speed c = 1. For phase ve­
locities satisfying U 2 < 1, there are three classes of solutions 
which are depicted in Figs. 8(a), 8(b), and 8(c). Notice when 
the energy parameter E = 1, the traveling wave is a single 
kink which rises from - 21Tto ° [this corresponds to picking 
the positive square root when solving for U r from (V.2a); the 
negative determination yields a single antikink which falls 
steadily from 0 to - 21T]. For E> l,u r is a monotonic se­
quence of kinks (antikinks), and should be thought of as a 
"kink train." (We amplify this interpretation in Sec. V.4.) 
This kink train is periodic in 0 (mod21T), with period 9 as 
computed directly from the energy equation (V.2a): 

( 

K2 - ui ) 1I2i21T du ----'.,.../2 = 9(K,CU,E), 
2 0 (E - cosu) 

E> 1. (V.3) 

When - 1 <E < 1, the traveling wave becomes oscillatory 
about U r = - 1T. The solutions are strictly periodic for this 
range of E with O-period 2, 

( 

K2 - cu2 )'!2lu, du 2 = 29(K,CU,E), 
2 U (E - cosu)'/2 

In this formula, the "turning points," U += = - 1T + uo(E), 
denote consecutive zeros of E - Velf(u) = E - cosu, as de­
picted in Fig. 8(c); these turning points fix the amplitUde of 
oscillation by 

Amplitude of Oscillation = Uo' (V.S) 

[Notice that the spatial period L and temporal period Tcan 
also be computed from the energy equation (V.2a) simply by 
changing variables from 0 to x and t, respectively. From 
these, the wavenumber K = 21T/L and frequency cu = 21T/T 
immediately follow.] 

When U 2 > 1, the Figs. 8(d), 8(e), and 8(f) apply with 
similar conclusions. 

The main point of this subsection is that, using this "ef­
fective oscillator" approach, one can quickly catalog all trav­
eling waves as belonging to one of six distinct classes. Once 
the phase velocity U is fixed by either I U I < 1 or I U I > 1, the 
traveling wave is either a train of kinks (E> 1), a single kink 
(E = 1), or an oscillatory state (IE I < 1). Moreover, the input 
parameters (U = cuIK,E) admit clear physical interpretation; 
they characterize the wavenumber, frequency, and ampli­
tude of the wave; the phase velocity is given by cui K and the 0-

Case (i) Case (ii) Case (iii) 

FIG. 9. Various locations of £"£2 with appropriate branch cuts (N = II. 
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period, x-period, and t-period are all defined by loop 
integrals. 

The .... -representation of u(x,t ) for single-phase waves 
has input parameters E"E2. The location of E,.E2 in the 
complex plane (subject to the constraints EjeI.IS ) 

~E reI.IS) and EjE(O, 00)) must yield an equivalent catalog 
for the traveling-wave solutions. We discuss these topics 
next. 

3. Wrepresentation for N = 1; catalog and physical 
characteristics of the traveling waves in terms of ~(S) 

FortheN = 1 case, thesimplespectrumI.IS ) = IE"E2 1 
can be located in the complex E plane in only two distinct 
ways: 

Case 1. E, < E2 < 0, so both lie on the negative real E 
axis. 

Case 2. E2 = E f,E, =l-E2, so they occur as a conjugate 
pair. 

These possible locations E, ,Ezlead to the three configu­
rations depicted in Fig. 9, which also displays the canonical 
branch cuts. We now use the analogy with whole-line sine­
Gordon scattering theory (refer to Theorem 111.2 and Figs. 2 
and S) to guess the excitation classification based on the loca­
tion of E, and E 2• 

Case 1, E, < E2 < 0, appears to arise from an isolated 
pole Ej < 0, which spreads along the negative real axis into a 
band of spectrum; this should be the periodic analog of one 
kink, namely, a train of kinks. 

Case 2, E2 = Ef,E I =l-E2, can be viewed (with E"Ef 
located near the positive real axis) as related to radiation 
degrees offreedom. It then seems that EI,E f should give a 
pure oscillatory radiation excitation. 

We will verify these guesses next using the single-phase 
Il-representation of u(x,t), which we now recall: 

(V.6a) 

where Il(X,t ) satisfies 

(.u)x = 2i( 1 ± l/16(E,EIl'/2)[1l(.u - Ed(.u - E2 )]. '/2 

(V.6b) 

We aim to deduce many facts directly from (V.6a) and 
(V.6b), without need of the exact integration ofthesell equa­
tions in terms of e functions. First, the relation between 
u(x,t) andll(x,t), (V.6a), together with thell equations, quick­
ly yields 

U, Il, 16(E,E2)'/2 - 1 

--;;: = ;: = 16(E,E2)'/2 + t' (V.7) 

Thus, the Il-representation confirms the N = I sine-Gordon 
solution is a traveling wave; that is, 

u(x,t) = u r(KX + cut ), 

with the phase velocity U = CU/K, from (V.7), given by 

U = .!:..!... = 16(E,E2)'/2 - 1 
U

X 
16(E,E2)'/2 + l' (V.8) 
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We therefore find that the phase velocity is a function of 
E, and E2 only through the product (E,E2) '12. We sketch U 
as a function of(E,E2)'/2 in Fig. 10; note the following facts 
(c=I is the characteristic speed): 

(i) (EIE2)1/2~0¢>1 U lSI; the sign determination of 
(E,E2 )1/2 fixes the phase speed relative to the characteristic 
speed. 

(ii) I(EIE2)1/2IS~USO; the wave is at rest when 
I(E IE2 )

1J211ies on the circle of radius ft and travels to the 
right (left) when I(E,E2)'/2Ilies inside (outside) that circle. 

Moreover, now that the ,u-representation has implied 
traveling waves, we can make contact between the ,u-repre­
sentation and the "effective oscillator" approach. The first 
step is provided by formula (V.8) for U in terms of E"E2; we 
now need to relate the energy parameter E of the effective 
oscillator to E, and E2• To do so, recall the energy equation 
(V.2a), which can be written in terms of x(al ax = K didO) as 

(V.9a) 

This equation (V.9a) can also be obtained from the ,u-repre­
sentation. First, 

2 -,u; 4[1+ 16(E,E2)'/2]2 (,u-Ed(,u-Ez) u ----
x - ,u2 - [16(E,E2)'/2]2 ,u 

which, upon using (V.8), may be reduced to 

!(U2 - l)u: = cosu +! EJ(E,Ezl'12 + E 2/(E,E2 ) 1/
2. 

(V.9b) 

Fixing U 2 < 1, and comparing (V.9a) and (V.9b), we find the 
energy E is given in terms of EI and E2: 

Case 1: E, <E2 <0 

E = 1((E,IE2)'/2 + (E2IE,)'/2) > 1. (V. lOa) 

Case2:E, =E!,E,i=E2 

E = - cos[ph(E,)]E( - 1,1). (V.I0b) 

For the choice U 2> 1, the same formulas hold with the total 
energy E replaced with - E. 

We now see directly from the ,u-representation that the 
location of E"E2 catalogs the traveling-wave solutions in an 
equivalent way to that of the effective oscillator parameters 

+1 

------~~--_t____it---i'----.-~---- (E c: )1/; 
1 C 

FIG. 10. Graph of U vs (£,£,)'1'. 
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(U,E). In summary, 
Case 1. E, <E2 <0:::> kink trains, Figs. 8(a) and 8(d). 

Case 2. E, = E !,E, i=E2~ oscillatory solutions, Figs. 
8(c) and 8(t). Moreover, in the limiting case E, = E2 < 0 (the 
transition state between Case 1 and Case 2), the total energy 
E = 1 and the resulting wave form is a single-kink-the sine­
Gordon soliton. Thus, 

Case 3. E, = E2 <0:::> "soliton limit"-a single kink, 
Figs. 8(b) and 8(e). 

We now turn to the physical interpretations of the pa­
rameters E, and E 2• This information is contained in formu­
las (V.8) for the phase velocity U and (V.lO) for the energy E. 
We elaborate by showing how the amplitUde of the oscilla­
tory states is fixed by the phase of E" and is independent of 
the amplitude IE,I. 

Fix U Z < 1 (the other case follows in the same manner), 
and consider the ,u-representation for this cut structure. 
From 

u(x,t) = i In( - ,u(x,t )/(E,E2)'/2), 

reality of the solution implies l,u(x,t) I = (E IE2) '/2 = IE II: 
,u(x,t) resides an the circle a/radius lEI I (see Fig. 11) with 
ph(,u) = - ('TT + u(x,t)), 

,u(x,t) = IElle - (n- t u1x.r)). 

Since u(x,t) oscillates between I u(x,t) + 'TTl <uo, we find the 
path of ,u(x,t) as shown in Fig. 11; thus, 

uo=amplitude of oscillation=phE I' (V.II) 

At this stage in the presentation, we have used the 
N = 1 ,u-representation to show the sine-Gordon solutions 
are traveling waves; the input parameters (E"E2 ) catalog all 
the traveling waves and describe their physical characteris­
tics (phase velocity and amplitude). Next, we use the N = 1 
e-function representation to arrive at an exact decomposi­
tion formula for each class of solutions (kink trains and oscil­
latory states). This decomposition formula firmly establishes 
that kinks and antikinks comprise the fundamental building 
blocks for each N = 1 solution. 

* E 
1 '-

o 

FIG. 11.Il-cyc1e;N = I,E, = E j,E, '1£,. 
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the traveling waves and describe their physical characteris­
tics (phase velocity and amplitude). Next, we use the N = 1 
8-function representation to arrive at an exact decomposi­
tion formula for each class of solutions (kink trains and oscil­
latory states). This decomposition formula firmly establishes 
that kinks and antikinks comprise the fundamental building 
blocks for each N = 1 solution. 

4. Infinite-product representation of e functions and 
summation representation of the traveling waves 

Toda2.l used an infinite-product representation of the 
theta function to interpret the periodic traveling-wave solu­
tions of the Korteweg-de Vries equation and the Toda lattice 
as a sum of soliton shapes successively shifted by one period. 
Generically, if we let ur(S) denote the periodic traveling 
wave with period L, and Us (S) denote a soliton shape cen­
tered at S = 0, Toda's formula is of the form 

n = - 00 

This formula allows the beautiful interpretation of the trav­
eling wave as a soliton on a ring. It seems one of the remark­
able properties of these completely integrable nonlinear 
equations that such a formula is exact. In this section, we 
adapt Toda's arguments to the sine-Gordon equation; we 
show the "helical wave" (Fig. 14) literally is a kink train, 
while the oscillatory state admits a very interesting 
interpretation. 

We begin by recalling the well-known single-soliton so­
lutions of the whole-line sine-Gordon equation. They are 
classified as "kinks" or "antikinks," and are depicted in Fig. 
12. The familiar formulas for these solitons, centered at xo, 
are 

U K(X - xo,t ) = 4 arctan(e ± "'), 

AK 

where 

(V.I2) 

¢ = (x - Xo - vt )/(1 - V2)1/2; (V. 13) 

a little manipulation places these in the equivalent form 

U K(X - xo,t ) = 2i In + I.e", ' (
1 -' "') 

AK 1 ± Ie 

(V.14) 

where the choice of branch for In is taken to correspond with 
Fig. 12. 

Now, the 8-function representation for single-phase 
traveling waves is [Eq. (V. 1 )] 

n n 

Kink Antikink 

FIG. 12. Kink, antikink shapes. 

u(x,t) = 2i In( 8 (l (x,t) + !;B ) ), (V.lSa) 
8 (I (x,t );B ) 

where the phase I (x,t ) takes the explicit form24 

I (x,t) = - 2iC [(1 + 1 ) (x - x ) 
16(EIE2)1/2 0 

+(1- 16(EI~2)1/2)t] -!B+l· (V.ISb) 

With this representation, the wavenumber K and frequency 
cu are given by 

K= - ;1TC (1 + 16(E \~2) 1/2 ). 
(V.16) 

cu= - ;1TC (1 _ 1 ) 
16(E\Ei/2 ' 

where the factor F = 1m B for the kink train and 
F = 1m (2B ) for the oscillatory state. The normalization con­
stant (C I d=C and period "matrix" (B \ d==B [see Eq. 
(IV.19)] are functions only of the eigenvalUes E .,E2; explicit 
formulas for C and B in terms of elliptic integrals are given in 
an appendix, but for now we note only their general form: 

ForE I<E2<0, B=ilm(B), C<O. 

ForEI=E~,Ed:.E2' B= -!+ilm(B), C<O. 
(V.I7) 

Although the one-dimensional 8 function is defined by 
the infinite series 

e (/;B ) = ! exp(i1TBn2 + i21Tln), 
n = - 00 

it also admits an infinite-product representation.25 In Ap­
pendix B, we use infinite products to show the 8-function 
representation (V.IS) of the single-phase sine-Gordon wave 
has the series representation26 

00 ( 1 _ ie
a
" ) ~ 00 ( 1 _ iea" ) 

u(x,t) = I 2iln . a + I 2iln ( - 1) . ' 
n ~ I 1 + Ie " n = ° 1 + lea" 

(V.18a) 

where 

an = K(X - xo) + cut + 2n1TiB. (V.18b) 

Now, by specializing to the two possible locations of E I ,E2 , using formulas (V.14) for the kink, antikink wave forms, and 
noting the facts (V.17), we find 

1263 

Theorem V.I. (Decomposition formulas for single-phase sine-Gordon waves) 
Fix I U I < 1 and the choice -l in I (x,t). Then 
(i) for E. <E2 <0, 
u(x-xo,t)= ! !u K (x-xo -nL,t)+1T(sgn(n)-I)J (V.I9) 

n = - 00 

= ! {2iln( 1 - ~e:: ) + 1T(sgn(n) - I)} 
n ~ ~ 00 1 + Ie 

(V.19') 
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(ii) fot EI = Ei,EI =l=E2, 

U(X - xo,t) = f ! UK(X - Xo - 2nL,t) + UAK(X - Xo - (2n - I)L,t) + 21T(sgn(n) - 1) I (V.20) 
n = ~ 00 

00 { (1 _ iee
)" ) ( I + iee

)" ') } I 2iln . 9 + 2i1n . 9 + 21T(sgn(n) - 1) , 
n ~ _ 00 1 + Ie }" 1 - Ie}" , 

(V.20') 

where 

011=:K(X - XI) - nL) + Q)t, 

K,Q),L = 21T/K are given by Eq. (V.16), and 

{ 
+ 1 for n >0, 

sgn(n) = 
- 1 for n';;;O. 

We display these decomposition formulas in Figs. 13 and 14. 
We now interpret these results: For E/ <E2 <0 (the 

"helical wave" solution), we find the wave is literally a kink 
train: a sum of translated kink shapes successfully shifted by 
one period L. [We note the choice of ( + !) in I (x,t ) yields an 
antikink train.] Moreover, the wave train is explicitly period­
ic (mod21T), with spatial period 

L= Im(B) 
21C 1(1 + 1I16(EIE2)1/2) . 

(V.2l) 

As E, and E2 coalesce, the period L becomes infinite (use the 
explicit formulas for B,C in Appendix 0), the kinks in the 
sum move infinitely far apart, and only the n = 0 term (a 
single kink centered at xo) remains; in this manner, the wave 
train reduces to a single kink as E I ,E2 coalesce along the 
negative real axis: 

lim L = + 00, 
£'-£2 

lim K(X - x{)) + {j)f = ¢ 
E'-£2 

_ 1 - l61EII 
u= , 

1 + l61E,1 

X -Xo- ut 
(1 - U2)1/2 ' 

lim u(x,t) = 4 arctan [exp( X - Xo - ut )]. (V.22) 
E,.E, (1 _ U2)1/2 

U(x-xo' t) 

I 
! 

/ 

-2L -L 
----+--·~-_~I -

--- - - ~' 
-- Full Wave 

~. ~ ~ Building Block..> 

FIG. \3. Graphic representation ofthe decomposition formula for the kink 
train, E, <E, <0. 
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In this soliton limit, the analyticity structure is depicted in 
Fig. 15. Thus, the collapse of the kink train to a single kink as 
E I ,E2 coalesce is consistent with our intuition from scatter­
ing theory. Before this limit is taken, the series representa­
tion (V.19) shows, for E I < E2 < 0, that the sine-Gordon solu­
tion is a train of distorted kinks, or kink "shapes;" the speed 
and width of each kink in the train is not that of the soliton 
except in the lone survivor of the infinite-period limit. This 
distortion in the speed and width of each kink from that of a 
kink in isolation is the only effect of the interaction of the 
"tails" of the individual soliton components as they form a 
kink train. 

For E, = E i,EI =l=E2 , the oscillatory wave solution, the 
series decomposition (V.20) is even more interesting. It 
shows that the fundamental building block of the oscillatory 
state is a kink-antikink pair, bound together to form the 
"bumps" in the wave. The full wave is then shown by this 
formula to be a train of kink-anti kink pairs, successively 
shifted over each period 2L. The building blocks and full 
oscillatory state are depicted in Fig. 14. Moreover, this re­
presentation shows the solution is truly periodic, with spatial 
period 2L given by (V.21). Once again, as EI,Ef collide on 
the negative real axis, E I = E f < 0, the branch cut collapses 
to a single pole on the negative real axis (Fig. 15); the period L 
becomes infinite, and only the single kink centered at X = Xo 

survives. Before this limit is taken, the individual kink, anti­
kink components are distorted kinks and antikinks. The in­
teraction of the tails alters the speeds and widths from that of 
the solitons in isolation to that of the wave train; the soliton 
speed-width relationship is recovered only for the single soli­
ton that survives the infinite-period limit. 

t) 

-",' 

, 
I 

I 

, , , \ 

I 

, 
I 

FIG. 14. Graphic representation of the decomposition formula for the oscil­
latory state, EI = Ef,E, olE,. 
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Thus, these decomposition formulas provide insight 
into the nature of the single-phase periodic wave trains. We 
emphasize that these representations are exact, and suggest a 
fundamental role for the whole-line soliton components in 
the periodic theory. Appendix 0 completes this section with 
detailed formulas for the constants C and B in the 8-func­
tion representation, in terms of EI and E2. The wavenumber 
K, frequency w, and other physical characteristics are then 
expressed in terms of C (E I ,E2),B (E I ,E2)' 

VI. THE DEGENERATE CASE OF PURE SOLITONS: 
N= 1,2 

In this section, we analyze the ~-representation of one 
and two phase sine-Gordon waves in the degenerate case of 
pure solitons. From this analysis, we gain: (i) very explicit 
information about the ~ paths for the specialized soliton 
configurations, which in turn suggests the nature of the ~ 
paths for the periodic configurations, (ii) an understanding of 
the "Jacobi inversion problem" on the sphere (genus zero 
Riemann surface), an instructive exercise since in this case 
the inversion problem is solved explicitly in terms of elemen­
tary functions (rather than 8 functions), (iii) the recovery of 
the well-known N = I (kink) and N = 2 (kink-kink pair, 
breather) soliton formulas, with the physical characteristics 
explicitly labeled by the spectral parameters Ej • Incidental­
ly, this analysis also illustrates how whole-line soliton con­
structions are imbedded in the periodic framework at the 
level of the ~ equations. More importantly, it displays con­
cretely the type and origin of the difficulty with the ~ 
variables. 

For N = 1, the degeneracy takes the form EI = E2 
= - K, and we denote,u ,ul' p 1/2 = (E IEz)1/2=K, and 
R (,u) = f,u(,u - Ed(,u - E2)r12_(,u) I 12(,u + K). Thus, the~­
representation for this degenerate N = } case becomes 

u(x,t) = i In( - ,uIK), (VI.}) 

(,u)x = 2i(1 ± 1/16K)(,u + K)1/,u. (VI.2) 
I 

This pair (VI.2) is easily integrated to yield 

InA (x,t) = () + InA 0, 

where 

e(x,t)=2[(1/K + 1/16 1/K)(x -xo) 

+ (1/K - 1/16 1/K)(t - to)], 

[} - i(,u(x,t )I K) 1/2] 
A (x,t) [1 + i(,u(x,t )IK )1/2] , 

and A () A (xo,to)' 

(Vl.3a) 

(Vl.3b) 

(Vl.3c) 

In general, ,u(x,t) as calculated from (VI.3) leads to a 
complex potential u(x,t) through (Vl.l). One must choose the 
initial condition,u(xo,to), or equivalently the integration con­
stant A 0, to ensure reality of u. The correct choice, as seen 

! .. o ... ... u. -.: 

FIG. IS. Spectrum in E-plane for single soliton. 
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from (VI. 1 ), is that ,u(xo,to) [and therefore ,u(x,t )] is con­
strained to a circle of radius K, 

1,u(x,t)1 = K = - E I. 

This reality constraint yields 

( 
1 - ieIJ+lnIA"1 )2, 

,u(x,t) = } . IJ+lnIA"1 
+le 

which leads to the familiar N = 1 soliton formula: 

(VI.4) 

u(x,t) = 4 arctan(e <P), (Vl.5a) 

ifJ (x-xd-v(t-to) v= 81/K (Vl.5b) 
(l_v2)1/2 1+161/K 

Thus, the solution is the single soliton-a kink. More impor­
tantly, though, ,u(x,t ) is seen to live on the circle of radius K in 
the cut E plane, and takes an infinite amount of "time" to 
travel from the pole at - K around the circle back to - K. If 
we spread the pole at - K into either periodic configuration, 
this soliton,u path indicates the periodic,u paths 
shown in Fig. 16. The point is that the degenerate case of a 
single soliton suggests the correct,u path for the N = 1 peri­
odic configurations, (as computed by the techniques of Sec. 
V). 

We now turn to the degenerate case of two solitons, 
with bound state eigenvalues at 

EI = E2 = - K I, E3 = E4 = - K2; 

there are two possible cases: 

(i) kink-kink pair KI >K2>O, 

(ii) breather KI = K!. 

(VI.7) 

For now we label the spectrum with K I, K2 via Eq. (VI.7), 
which yields 

4 

p= II Ej =K~K~, 
j~ I 

\ I 

..... _- -; "' I ,,/ 

: 

\ , 

FIG. 16. Single phase ,u-paths. 

I 
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I 
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and we fix P I/z = + K,Kz. With these ingredients, the 
N = 2 t-L-representation of u(x,t ) becomes 

u(x,t) = i InlJ.tt//jK,Kz), (VI.8b) 

where 

IJ.tk)x = 2i [( 1 + Ilj# ) R IJ.tk) ]. 
t 16K,Kz IJ.tk - Ilj#) 

(Vl.8c) 

The same algebraic manipulations which were used to lin­
earize the general Il equations in Sec. IV will place these t-L 
equations (VI.8c) in the form 

~ + dll 2 _ ± 2i (dX) 
R IJ.ttl R IJ.tz) - 16K,Kz dt' 

Il,dll, + Ilzdll z = 2i (dX). (VI. 9) 
R IJ.ttl R IJ.tz) dt 

In this degenerate case, the integration of these equations is 

I 

elementary. [In the general nondegenerate case of Sec. (IV), 
their integration requires hyperelliptic integrals]. After this 
elementary integration and algebraic simplification, Eq. 
(VI.9) become 

A . ( t) = O,{x.t i'A 0 
J x, e J' 

with Aj defined in terms of Ilj by 

A = ( 1 - ilJ.t/Kj/2 ) ( 1 - ilJ.tzlKj ) '/2 ) 

j- 1 + ilJ.t,IKj12 1 + iIJ.t2IKj)'/2 ' 

and with the phases 8j given by 

8j-2( 1/Kj + 1/16 1/Kj)(x -xo) 

+( VKj -1/16vKj )(t-to)' 

(IV. lOa) 

(IV. lOb) 

(VI.11) 

Alternatively, consideration of combinations of V Il" V III 
(rather than 1l,,1l2 individually) leads to the equivalent 
representation: 

1/KM ~e(!' - I)(A ~ee2 + 1) - 1/Kz(A ~ee] + I)(A ~ee2 - 1) 

1/Kz('A ~elll - I)(A ~e1l2 + 1) - 1/KM ~elll + I)(A gell1 _ 1)' 
(VI.12a) 

(VI.12b) 

where 

exp(iu/2) = IltflzIK,Kz' (VI. 12c) 

As in the N = 1 case, these representations will in general yield complex u and w. We must select the integration 
constants A J to ensure reality of u and w. First, we make this selection for the kink-kink case, then for the breather. 

Case i (Kink-kink pair: K, > Kz > 0.) In this case, Eqs. (Vl.ll) show the phases (), and ()z are real. The constraint A Y purely 
imaginary will ensure real u and w. To verify this constraint, allow (),-oo in (VI. 12). This forcesll,- - K,. If A ~ is chosen 
purely imaginary, Ilz will lie on a circle of radius K z and the potentials u and w will be real. Similarly, allowing ()z- 00 in (VI. 12) 
forcesll2- - K2. The choice A ~ purely imaginary then placesll' on a circle ofradiusK, and yields real u and w. Since theA J 
are integration constants, they are independent of (), and ()z; these choices are valid for all (), and ()2' 

Finally, consider thell paths for this kink-kink pair. Whenll, is held at - K" thellz path is a circle ofradiusKz centered 
at the origin. When Ilz is held at - K z, the Il, path is a circle of radius K ,. These configurations place one soliton at 00; the 
second soliton does not interact at all with the one at 00. As Il, moves away from - K 1 (and the first soliton moves in from 00 ), 

thellz path is no longer a perfect circle. This distortion accounts for the effect of the first soliton on the second. Indeed, its path 
depends upon the valuelll through (VI. 12a) and (VI. 12b). Consideration of these t-L paths leads one to guess that in the periodic 
generalization, a kink-kink-train, the Ili paths will qualitatively appear as shown below in Fig. 17. 

Case ii (Breather: KI = K n SinceK1,Kz are complex, two real phases must be deduced from the complex phases ()I'()Z of 
Eq. (Vl.ll). These real phases will label physically the two degrees of freedom in the breather waveform: (1) the translation of 
the breather envelope at a fixed speed, and (2) the beating or "breathing" of the envelope at a fixed frequency. K 1 = K i shows 
()I = () i and two real phases, 171 and 172' are identified simply as the real and imaginary parts of ()"()2' We therefore define 

171= - 2 sin(¢ 12)[( 1/ K + _1_ )(X - xo) + (1/ K - _1_) (t - to)], 
161/K 161/K 

(VI.13) 

2 cos(¢ 12)[( 1/ K - _1_ )(X - xo) + (V K + _1_) (t - to)], 
161/K 161/K 

(VI.14) 

I 

where kink-kink pair is not available for the breather-the two 

()I = 171 + i172' ()2 = 171 - i172' (VI.1S) 

and 

EI =Ei = Kei<b 

( 1/ KI = irK )1 12ei<l> 12, 1/ K2 = - irK ),/Ze - i<b /2 ). 

Next we pick the integration constants A J to ensure 
reality. The asymptotic trick which we employed for the 
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degrees of freedom do not separate. Instead, a tedious exer­
cise is required to determine the constraints. We sketch the 
details next. 

From Eq. (VI. 12c), reality of u(x,t) clearly implies the 
constraint 

11l,(X,t Jllz(x,t Ji = K,Kz = K 2. (VI.16) 

This gives one piece of information in determining the 
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FIG. 17. ,u-paths for kink-kink train. 

constraints: 

Ip~p~1 =K2. 

; 
./ 

(VI. 17) 

Next we work with Eq. (VI.l2a) for (PIlll I2 /K, which by 
(VI.16) must have modulus one. This condition implies 

A~ =(A~)·. (Vl.lSa) 

Moreover, using the particular form of A ~,A ~,Eq. (VI. lOb), 
together with the constraint Ip?p~ I = K 2, the condition 
ReA ~ = ReA ~ actually forces both quantities to vanish: 

ReA ~ = ReA ~=O. (VI.lSb) 

Thus, reality of u(x,t ) leads to 

A ~=iIA ~ I, A ~= - ilA ~ I = (A ~).. (VI.lSc) 

Equation (VI. 12a) then simplifies to 

[
1 +'t t/J ( sin(7h -P) )] 

I an'2 cosh(7J1 + lnlA ~ I) 
= -[1 -. t-¢J (~Sin(~7J2 -~P""';"':"') -) ] , 

- I an'2 cosh(7J1 + InlA ~ I) 
(VI.l9) 

1T {O if ImA? > 0, 
where P = - - ph(A ~) = 

2 - 1T if ImA ~ < O. 

Since u(x,t) = 2i In((p III 2) '12 /K), Eq. (VI.l2c), we arrive at 
the usual breather formula 

u(x,t) = 4 arctan ( tan(t/J /2) sin 7J2 ). 
cosh(7J, + lnlA ~ I) 

(VI.20) 

The physical characteristics of the breather are clearly la­
beled in terms of the simple spectrum {EI ,E2 = E f 1; in par­
ticular, (i) the phase 7JI(X,t) labels the translation of the enve­
lope, while 7J2(X,t) labels the "breathing" of the envelope, (ii) 
from 7J 1 (x,t ), we find the envelope velocity (U) depends only 
on K = IEII, given by (for P 112 > 0) 

U = 16K - 1 
16K + 1 ' 

(iii) from 'Yh(x,t), the beating frequency (v) of the envelope in 
its own frame depends only on ¢J = phase (E Il, 

v = cos(t/J /2). 

These formulas clearly show how the two breather degrees 
of freedom vary with the location of E"E2 = Ef. 
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We return now to the determination of the paths of 
PI(X,t )"u2(X,t). Notice (PIll2)1/2 lives on a circle [see (VI. 17)]. 
Using this constraint, together with (VI.Bc), we deduce from 
(VI.l2b) that ( v' PI + v' P2) is purely imaginary. To obtain 
more detailed information about these P paths, we use a 
computer to evaluate and plotPI andp2 from (VI.l2a) and 
(VI. 12b) for a variety of input parameters 
(E1,E2 = E f"u~ ,p~). The results of these computer plots can 
be summarized as follows. 

(1) As expected, for fixed values of E, and E2 = E f, the 
paths of p, (x,t ),P2(X,t ) do not lie on any fixed curve in the 
complex plane. Indeed, the path of p, depends continuously 
on the value of P2' However, one might expect that, for fixed 
E, andE2 = E f,allcyclesofp,(x,t )[respectivelYIl2(x,t )]will 
be equivalent as paths of integration on the Riemann surface 
of R (P). (This means all pathsofp" respectively 1l2' are in the 
same homology class on the Riemann surface.) Even this is 
not the case. 

(2) Fix E"E2 = Ef, and choosell~ ,p~ consistent with 
realityofu(x,t). To observe closed cycles ofll"P2 (i.e.,period­
ic orbits) one must fix a value of the translation phase 7J ,(x,t ) 
and then flow according to the breathing phase 7J2(X,t ). Phys­
ically, this amounts to riding with the breather along the 
straight line motion in x,t space determined by 
7JI(X,t )_const, thereby experiencing only the periodic beat­
ing of the envelope. The following surprising result appears 
generic for every fixed location of E I ,E2 = E f. 

(3) There is a critical value 7J, C of the translation phase 
7J,(x,t) corresponding to a critical line [7J,(x,t )=7J, C] in x,t 
space. In the "half-space" 7J I (x,t ) < 7J, c, all paths of p, (x,t ) 
[respectively P2(X,t)] under the flow of 7J2 are equivalent, as 
paths of integration, to a closed loop r, (respectively r2 ), 

such that: E j EIntrj ;O,E rEExtrj. (See Fig. IS.) In the other 
half-space 7J I(X,t) > 7J I c, the l.L cycles have interchanged 
roles, that is, PI (x,t ) cycle = r2 and P2(X,t ) cycle = r,. 

By considering a sequence of plots of Il,(x,t ),P2(X,t) 
along 7J, (x,t )-C, with C ranging through values centered at 
7J I c, we observe the smooth evolution of Fig. IS(a) into Fig. 
1S(b). The critical value 7J, C can only be determined approxi­
mately. Along the lines 7J, (x,t )=a,a ~ 7J, c, a < 7J, c, Fig. 19(a) 
depicts the p, path. Then along the neighboring line 
7J,(x,t )-b,b~7J, c,b > 7J, c, Fig. 19(b) depicts the PI path. 
(The paths are switched for P2') 

(S) There are two unusual events occuring here: (a) the 
pj (x,t) appear to pass right through the stationary points 
E"E2 of the ODE's (VI.Sc), and (b)p ,(x,t )andp2(x,t ) evident­
ly collide, corresponding to a singularity of the ODE's 
(VI.Sc). Both events violate the smooth evolution of these ~ 
paths described above in (4), unless they occur simultaneous-

EX (9 
(bl 2 

FIG. 18. (a) Half-space lI,(s,t) < 11,', (b) half-space lI,(X,t) > 11, '. 
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(a) 

Iy. That is, for example, PI-P2 in such a way that the limit of 
PI ~ E/PI ~ P2 is finite and nonzero [refer to (VI.8c)). This 
behavior occurs along 'T/1(X,t )='T/I c, and only at one instant 
in (x,t). 

Remarks: (I) We have therefore shown that even for this 
simplified case of pure solitons, the spectral variables p. (x,t ) 
do not lie in any fixed homology class (class of equival~nt 
paths of integration). This is consistent with the findings of 
McKean27 and Trubowitz. 28 This is somewhat dishearten­
ing; the"", variables are clearly the natural variables for all 
the manipulations displayed thus far, yet appear to be un­
natural topologically. One hopes (at least we do) that these 
apparent pathologies can be overcome, perhaps by a suitable 
change of coordinates. 

(2) The inferences about the periodic problem based on 
this breather analysis are that in a certain confined region of 
x,t space, thepj cycle contains the canonical aj cycle,} = 1,2 
(Fig. 20). In the complement of that region, the PI ,P2 cycles 
are interchanged. Apparently PI can collide with P2' in 
which case the coordinates break down. 

VII. SEPARABLE SOLUTIONS (N = 2) 
1. Definitions and motivation 

Separable solutions of the sine-Gordon equation 

uti - U xx + sinu = 0, (VII. I) 

are defined by the ansatz that the x,t dependence separates, 
for example, 

u(x,t) = 4 arctan(f(x)g(t)). (VII.2) 

This ansatz was initially suggested by Lamb29 in the context 
of optical pulse propagation. Since then, Costabile et al. I and 
Fulton30 have applied separable solutions to study the oscil­
latory behavior of finite one-dimensional Josephson trans­
mission lines, and Trullinger31 has used such solutions to 
analyze boundary effects on charge density waves. The most 
detailed mathematical study of the "separability" of the 

FIG. 20. Canonical a cycles. Genus 2. 
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sine-Gordon equation is given by Osborne and Stuart. n The 
salient feature of the above references is the fact that the 
separable ansatz, (VII.2), leads to elliptic function solutions 
forf(x) andg(t); moreover, from Refs. 1 and 30 it is clear on 
physical grounds that these oscillatory sine-Gordon solu­
tions have at least two degrees of freedom, and therefore 
represent the nonlinear interaction of two or more periodic 
traveling waves. 

We know (refer to Sec. IV) that the general representa­
tion of periodic N = 2-phase waves leads to hyperelliptic 
functions on the genus 2 Riemann surface of 

4 

R2(E)=E II (E-Ed, 
k~1 

not to elliptic functions on a genus 1 Riemann surface. The 
question naturally arises as to the source of this degeneracy 
in the function theory. In this section, we identify and de­
scribe this degeneracy. We will analyze the special case stud­
ied in Ref. I, the "open circuit" boundary conditions, 

uJO,t)=ux(L,t)=O. (VII.3) 

The authors give explicit 2 degrees of freedom separable so­
lutions satisfying these boundary conditions. There are 
many other types (as discussed in Ref. 32) of separable solu­
tions, which can be analyzed similarly. Our approach is out­
lined below. 

We first show that the "open circuit" boundary condi­
tions, (VII.3), res~lt fr?m spatial symmetry and periodicity 
of the initial data u(x),v(x); therefore, N-phase solutions with 
one additional constraint (initial data symmetric about 
Xo = 0) will satisfy open circuit boundary conditions. We 
then show how this spatial symmetry implies a spectral sym­
metry Ej =>1I162E). With this symmetry in the simple spec­
trum ~(Sl, the p-representation and 8-function representa­
tion are used to show these special solutions are standing 
waves whose x,t flows separate and can be explicitly integrat­
ed in terms of elliptic functions. 

2. Open circuit ¢:> spatial symmetry 

We first show the open circuit boundary conditions 
(VII.3) result from periodic initial data which are even func­
tions about Xo = O. The converse is much easier and does not 
require proof. We state the result in 

Theorem VII.I: Let u(x,t ) be a solution ofthe sine-Gor­
don equation, (VI. I), with smooth, periodic initial data 
u(x,t = O)==u(x),u,(x,t = O)==~(x), even about x = 0: 

~(x + L ) = u(x)(mod21T), 

u( - x) = u(x), 

u(x + L ) = ~(x), 

~( - x) = ~(x). 

(VII.4) 

Then: u(x,t ) is even and periodic in x for all time t, and satis­
fies the open circuit boundary conditions at x = 0, ± 2L, .... 
That is, u(x,t) satisfies 

(i) u(x + L,t) = u(x,t )(mod21T), 

(ii) u( - x,t) = u(x,t), 

(iii) ux(O,t) = ux(nL,t) = O. 
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ProofofTheorem: Part (i) is established by McKean.27 
To prove Part (ii), we begin with u(x,t) satisfying the hypoth­
eses (~( - x),v( - x)) = (~(x),v(x)). Now define u ± (x,t) by 

u ± (x,t) = ~(u(x,t) ± u( - x,t I). 

Weaim to show u_(x,t )=0. It follows from the sine-Gordon 
equation that u ± (x,t ) satisfy the system 

(a" - axx)u+ + sinu+ cosu_ = 0, 

(a" - axx)u_ + sinu_ cosu+ = 0, 

u +- (x,O) = ~ ± (x), 

a,u ± (x,O) = V ± (x). 

{ ~( - x) = ~(x) 
But 0 0 

v( -xl = v(x) 
implies 

so that u_(x,t )=0, proving Part (ii). Part (iii) follows rather 
easily, since (~( - x),v( - x)) = (~(x),v(x)) together with 
smoothness implies ax u(x,! )Ix = 0 = O. Periodicity then gives 
ux(x,t )Ix = nL = 0 for any integer n. 

3. Spatial symmetry <=> spectral symmetry 

We now use the FIoquet theory of Sec. II to character­
ize even potentials by a symmetry in the spectrum. We begin 
with 

Theorem VU.2: Consider the Takhatajian-Faddeev ei-
genvalue problem (11.6), with periodic, even initial data 

(~( - x),~( - xl) = (~(x),~(x)), 

~(x + L ) = ~(x) + 2rrM,M -"charge" of ~(x), 

v(x + L) = v(x). 

Then the Floquet discriminant..:l (E) satisfies the sym­
metry relation 

..:l (1/16 2E) = (- 1)M..:l (E). 

The proof is given in Appendix C. (We also note the 
converse is true). It is now an easy exercise to deduce symme­
tries in the simple spectrum l,S). In particular, we find 

Corollary VII.2. Under spatial symmetry as in Theorem 
VII.2, 

(VII.5) 

Consider the implications of this corollary for the sin­
gle-phase case. From Sec. V, we know theN = 1 simple spec­
trum 1:~'~ I occurs in only two forms 
1:~~~1 =!EI <E2 <01 or !EI =ET,EI =I=E2 1.Forthe 
kink train case, EI < E2 < 0, the symmetry (VIII.5) implies 
E2 = 11162E I • But the phase velocity Usatisfies (Sec. V) 

U = 16(EIE2)1/2 - 1 . 
16(EIE2)1/2 + 1 ' 

since U cannot be infinite,33 we find that the only open cir­
cuit kink trains are at rest (U = 0). The osciIIatory case, 
EI = ET,EI =l=E2, yields the same result. Physically, this 
time-independent nature of open circuit single-phase solu­
tions is quite obvious. For example, in the Josephson trans­
mission line, u represents the magnetic flux. A single-phase 
traveling wave u will either transfer flux through the left 
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( U < 0) or right ( U> 0) boundary, violating the open circuit 
boundary conditions; thus, stationary waves. 

The physical considerations of Refs. I and 30 imply 
nonstationary separable solutions must be standing waves. 
This forces N-,2; next, we investigate N = 2-phase solutions 
(Sec. IV) in the light of this spectral symmetry. 

4. Consequences of the spectral symmetry (N = 2): 
separability, standing waves, and elliptic functions 

We now use the spectral symmetry, which character­
izes the sine-Gordon solutions satisfying open circuit bound­
ary conditions, to show first that these solutions are, in fact, 
separable, and second, to describe the degeneracy in the 
function theory. Our analysis uses both e function and,u­
representations of u(x,t ) (Sec. IV). The J.L-representation is 
summarized by 

u(x,t) = i In(.u I(X,! ),u2(X,t)l P 1/2), (VII.6a) 

where P = II E),l:(S)={ E I, ... ,E4 ). and ,u1'2 satisfy 

(.u, )x 

= 2i (I + ,uh'iI2 )[,u, IT (.u, - E))] II/ II (.u, - ,uj)' 
16P j=1 ,,,o' 

(VII.6b) 

u(x,t) = 2i In ( e (I(x,t) + !;B) ), (VII.7a) 
e (I(x,t );B ) 

where l(x,t) = (/1(x,t ),12(x,t I), 

Iv (x,t ) = - 2i[ (CVI + 16~ 1/2 CV2 )x 

+ (CVI - 16~ 1/2 CV2 )r ] + Iv (0,0), 

4 

E5=0, P= II Ek • 
k=1 

First note that the spectral symmetry 
Ej E1: IS 1=>1/1 62EjE1:IS) forces 

~ISI_ 2 2 
£.. ={EI,E2,1/16 E I,1/16 E21, 

4 

R 2(E) = E II (E - Ej)(E - 1/162Ej ), 

j=1 

(VII.7b) 

(VII.8a) 

(VII.8b) 

4 1 
P= II E=- (VII.8c) 

j= I '-164 ' 

With l:(S) given by (III.8a), we consider two configurations of 
the spectrum; for convenience, we list and graph these be­
low, together with the branch cut structure and canonical a i 
cycles. We note that..:l 2(E) (and therefore L(S)) is invariant 
underthemapE--+1/162E, and moreover the circle IE I =16 
is mapped onto itself by this transformation. This fact is 
manifested in Figs. 21(a) and 21(b); in each case, there is a 
clear symmetry about the circle IE I = -h. (The entire analysis 
which follows rests on this observation.) 

This spectral symmetry leads to analogous relations 
among the holomorphic differentials on the Riemann sur­
face of R (E), Eq. (VII.8b). We describe these facts in 

Case 1. Two trains of kinks, antikinks: 

EI <E2 < 1/162E2 < 1/162E I • 
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(a) 

(b) 

1 
aI-cycle - Ib a2 - cycle 

aI-cycle 

\.::E 
2 

1 

162E 
1 

FIG. 21. Branch cut structures for two-phase solutions with open circuit 
boundary conditions. (a) Branch cuts and ai cycles for 2-phase kink-kink 
trains under open circuit B.C. (b) Branch cuts and ai cycles for 2-phase 
breather or plasma oscillations satisfying open circuit B.C. 

Case 2. Breather trains, plasma oscillations: 

E I ,Ef,1I162E I ,1I162Ef, with IEII >k 
Lemma VII.!. Define a basis! dI,dJ I of holomorphic 

differentials on the Riemann surface of 
R 2(E) = E nJ= I (E - Ej)(E - 1I162Ej ) by 

dI= dE , dJ= EdE. 
R(E) R(E) 

(VII.9) 

In terms of these differentials, denote the a, periods (with the 
a, cycles depicted in Figs. 21) by 

1 (a, )= £ dI, J (a, )= £ dJ. (VII.W) 

Then: 
(i) dI(E) = - 16dJ(€), 

- 16dJ(E) = dIrE), where € = 1I162E, 

(ii) I(a.) = 16.1(a2)' 

I(a2 ) = 16.1(a.). 

The proof is an immediate consequence of the change of 
variables € = 1I162E. 

With this lemma, we can immediately deduce 
Fact I (Standing waves): N = 2-phase solutions with the 

spectral symmetry EjE~(SI=?1I162EjE~(SI are standing 
waves. The proof of this fact comes by analyzing the two 
phases 11•2 (x,t) in the 8-function representation (VII.7). The 
normalization constants CVf" as defined by (IV. 19b), are giv­
enintermsofl(a i ),J(a,)by[with W ==.I (a .11 (a 2) -I(a dJ(a2)] 

C - l(a2) C _ -J(a2) 
11- W' IZ - W ' 

C - - I(a.) C _ J(a l ) 

21 - W ' 22 - W· 

Now using Lemma VII. 1, Part (ii), the phases 11•2 (x,t) be-
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come [with the choice P 1/2 = (1/164 )1/2 = + 11162] 

- 32i 
I(xt)- ------

I , - [I(a 2W - [/(aIW 

X [(/(a2) - I (a.))x + (I (a 2 ) + I(a.))t] + 11(0,0), 

I (x t) _ - 32i 
2 , - [/(a 2W - [/(al)f 

X [(1 (a 2 ) -1 (a .))x - (I (a 2 ) + I (a .))t ] + /2(0,0). 

Thus, the phase velocities are equal but opposite: standing 
waves. 

The next result we state as 

Fact 2 (Separability): The (;)-ftows explicitly separate. 
That is, there exists one combination of the variables I" I and 
1"2 which depends on time t and is independent of x, and a 
second combination which depends on x and is independent 
oft. 

We use the,.., equations (VII.6b): 

(VII.Il) 

which can be written in the equivalent differential form: 

(VII. 12a) 

(VII. 12b) 

Algebraic manipulation then yields quite simple expressions 
for the (;)-ftows: 

...:!i!:J... + dl"z = ± 32i(dX) (VII.13a) 
R f.u.) R f.u2) dt ' 

(VII.13b) 

Then, simply adding the dx equations and subtracting the dt 
equations in (VII.l3a) and (VII.l3b), we find the (;)-ftows 
explicitly separate. The x dependence is given by 

[ 1+ 16,u1 J''') + [ 1+ 16,uz ]'''0) = 64i 
Rf.u.) '1-"1 x R(,u2) 'I-"_x , 

(VII.14a) 

[ 
1 + 16,u1 J''') + [ 1+ 16,u2 ],,,,) =0 
R(,ud '1-"1/ R(,uz) '1-"_1 , 

while the t dependence is given by 

[ 
1-16,u1 ](,u) + [ 1-16,uz ],") = -64i, 
R(,ul) II R(,uz) '1-"21 

(VII. 14b) 

[ l-16,u1 ]''') + [ l-16,uz] '''0) =0. 
R(,ud '1-"1 x R(,u2) 'I-"_x 

This means the integral 

f f" [ I + 16,u]d + f'" [ 1 + 16,u ]d 
R f.u),u R f.u) ,u 

M. G. Forest and D. W. McLaughlin 1270 



                                                                                                                                    

is independent of t and linear in x, while the integral 

f l" [ 1 - 16J.l ] d + fl" [ 1 - 16J.l ] d 
R (P) J.l R (P) J.l 

is independent of x and linear in t. 
We can also conclude from these relations 
Fact 3 (Elliptic functions): The (:)-flow of the 2-phase 

solutions with the spectral symmetry Ej=?1I162Ej in .lISI 

depends on elliptic functions which live on one of two genus 
1 Riemann surfaces: 

w(z) = [(z ± -h;)(z - zd(z - Z2)] 1/2, 

where 

zi=~(Ei + 1I162Ei ), i = 1,2, 

(VII.ISa) 

(VII.ISb) 

To see this fact, we first note from Fact 2 and Eq. 
(VII. 14) that the x flow is characterized in terms of one par­
ticular differential,( 1 + 16E )dE / R (E ), as opposed to the 
usual case which requires both differentials in the holomor­
phic basis (see the O-function representation). Similarly, the t 
flow depends only on the one differential 
[( 1 - 16E)/ R (E )]dE. The symmetry in R (E ) suggests a 
transformation which reduces the (:)-differentials to elliptic. 
The map that accomplishes this reduction is 

(VII.16) 

the resulting differentials for the (:)-flows are 

x-flow: 
(1 + 16E)dE - 16dz 

R(E) -+ [2(Z--h;)(Z- ZI)(Z- Z2)] 1/2 ' 

(1 - 16E )dE - l6dz 
-+ 1/2' 

R (E) [2(z + -h;)(z - ZI)(Z - Z2)] 
t-flow: 

with Zi defined in Fact 3. This proves Fact 3. 
We emphasize these differentials involve square roots 

of cubics in z; they are elliptic. In general, they yield elliptic 
functions with distinct moduli. 

We remark that the mapz = !(E + 1I162E) is invariant 
to the spectral symmetry Ej=?l1 1 62Ej (which, of course, 
motivated its use) and therefore does not distinguish between 
the points Ej' 1I162Ej . The branch points become one in the 
image space, effecting the reduction to elliptic functions. The 
appearance of ± -h as branch points for the (n-flow is related 
to two facts. First, ± -h are the fixed points of the mapping 
z(E). Second, the circle of symmetry in the Eplane IE I=-h, 
gets mapped onto the slit - -h<z< + -h. 

In this section, we have described a class of "open-cir­
cuit separable solutions" in terms of inverse spectral theory. 
The generality of these separable solutions, as well as the 
origin of their elliptic nature, becomes clear from this inverse 
spectral analysis. Other classes of separable solutions could 
certainly be analyzed by similar symmetries in the spectral 
transform. These two-phase separable solutions could be 
used (i) to clarify theoretical studies, since they are the most 
concrete examples of 2-phase periodic waves, and (ii) to 
study, by the methods of inverse spectral theory, the effects 
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of boundary conditions on the sine-Gordon equation. 

Note added in proof Since this work was completed, 
some progress has been made in the understanding of real, 
N-phase sine-Gordon waves by E. Date of Kyote University 
and by N. Ercolani and G. Forest, Ohio State University. 

ACKNOWLEDGMENTS 

We have enjoyed many discussions with our colleague 
H. Flaschka. All sections of this survey were directly influ­
enced by these interactions. We also acknowledge conversa­
tions with H. McKean and E. Trubowitz, who clarified for 
us difficulties with the J.l coordinates for sine-Gordon waves. 
Professor McKean also made his manuscript available to us 
before its publication. 

APPENDIX A: SCATTERING MOTIVATION 
1. Infinite-line scattering properties 

Consider the eigenvalue problem (11.2) under vanishing 
boundary conditions at Ixl = 00, (lI.4b) and (lI.4c). Here u 
and ware taken real. 5.6.K.34 

The "Jost" solutions are defined in terms of their as­
ymptotic behavior at x = ± 00: the vanishing boundary 
conditions on u(x), w(x) reduce (11.2) to (A = viE) 

[(0 - 1) -.!!.... + (_1 _ A )] '" = O. 
1 ° dx 16,1 

(AI) 

A basis of solutions for (AI) is 

"'I = (~J e-iIA-III6Alx, "'2 = C) eiIA-I/I6Alx. 

The Jost solutions f; ,gi ,i = 1,2 are then defined as solutions 
of the full problem (11.2) satisfying the following boundary 
conditions: 

f,~ (!)eiIA-1/16AIX as x-++ 00, 

f2 ~ ( ~ J e - ilA - 1/16A Ix as x-+ + 00, 

gl ~ (!) eilA - 1/16A Ix as x-+ - 00, 

gz~ (~Je-iIA-I/I6AIX as x-+- 00. 

If we now define fundamental matrices for (11.2) in 
terms of these Jost solutions, 

(A2) 

then the transfer matrix T(A ) maps the basis elements gl,gZ' 

which behave like the "free" eigenfunctions at x = - 00, 

across the influence of the potentials, into the solutions f"fz, 
which behave like the "free" eigenfunctions at x = + 00. 

That is, 

F(x,A ) = G (x,A )T(A ), 

T(A) = (tll(A) tdA )). 
tzM) tdA) 

M. G. Forest and D. W. McLaughlin 
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It follows that for A. real, T (A. ) can be expressed in terms of 
two complex-valued functions: 

T(A. ) = (a(A.) 
b (A.) 

- b *(A.)) 
a*(A.) , A. real. (A4) 

The realization of alA. ),b (A. ) in terms of reflection and 
transmission coefficients is illustrated by the following ex­
ample. Consider an incoming plane wave from x = + 00 
with unit amplitude, which will impinge upon the potential, 
resulting in transmission through to - 00 of some parts of 
the wave while the remainder is reflected back to + 00. 

From (A3), we have the following [after dividing by 
alA. )]: 

1 b *(A. ) 
- g2(X,A.) = -- fl(x,A.) + f2(X,A.). 
alA. ) alA. ) 

Referring to the asymptotic nature of (,gi' we write this 
equation in the asymptotic form: 

_1_ ( 1 .)e - ilA ~~ 1/16,1. Ix 

a(A.) -/ 
x-- 00 

b *(A. ) (~) eilA - 1/16,1. Ix + ( 1 .) e - ilA - 1/16,1. Ix. (AS) 
a(A.) / - / 

x->+ 00 

Since e - ilA - 111M Ix refers to a left-running plane wave, while 
eilA 111M Ix is right-running, we interpret (AS) as the free 
plane-wave solution of unit amplitude, (1_ i)e - ilA - 1I16A)x, 
launched from x = + 00 and traveling toward the potential; 
the term 

b *(A. ) (~) eilA - 111M Ix 

alA. ) / 

as X-> + 00 is the reflected part of the wave, traveling to the 
right, back to x = + 00, while the left-hand side, 

_1_( 1.)e- i(A-1IIM)X, 
a(A.) -/ 

is the transmitted part of the wave which has made it 
through the potential and is traveling to the left out to 
x = - 00. 

Due to these interpretations, l/a(A.) TR (A. ) is referred 
to as the right transmission coefficient, and 
b *(A. )la(A. )==RR (A. ) is the right reflection coefficient. In the, 

same manner, we can launch the free plane-wave eigenfunc­
tion from - 00, 

(~) e'lA - 111M Ix, 

which is right-running, and find the left transmission coeffi­
cient TL (A. )= l/a(A. ) and the left reflection coefficient 
RL(A.) b(A. )/a(A. ).(Useg l + [b(A )/a(A )]gz = [l/a(A )]f l .)The 
following facts then follow about whole-line scattering 
theory. 

(i) T R (A. ) = TL (A ) = 1/ alA ) is the transmission coeffi­
cient, 

(ii) f l ,g2 and thereby alA. ) can be analytically continued 
into the upper-half A. plane, where (ImA. >0) 

(iii) . 

1 {I as A.-> 00, 
a(/t )-

exp[(i/2)(u(00) - u( - (0))] as A.-O, 

(iv) la(A W + Ib (A. W = 1, A real, 
(v) the real A axis is continuous spectrum and is associat­

ed with radiation in the sine-Gordon field, 
(vi) a(A.i ) = ° iff A.i is a bound state eigenvalue; these 

occur on the positive imaginary axis or in pairs (A.i' - A!). 
In the general case of vanishing boundary conditions at 

Ixl = 00, (I1.4b) and (I1.4c), the transfer matrix T(A), as de­
fined by Eq. (A3), does not extend to the upper-half A. plane. 
Rather, T (A. ) is represented by four complex functions: 

T(A.) = (a(A.) b (A.)), AEC, 
b (A.) a(A) 

(A6) 

where alA. ) is analytic in the upper-half A. plane, lmA. >0, and 

alA. ) is analytic in the lower-half A. plane, ImA.<O. In the 
overlapping region, lmA. = 0, [see (A4)] 

alA. ) = a*(A.), b (A.) = - b *(A.), A real. (A 7) 

However, for the restricted class of compact support 
potentials, all of these functions (a,b,a,b) can be analytically 
continued into the whole A. plane. 

2. Proof of Theorem 111.1 

From Theorem 11.2, 

A (A. ) = ¢> +"' (xo + L,xo,A. ) + ¢> -.2 (xo + L,xo,A. ). 

Using scattering theory of Sec. AI, we have the following "asymptotic" behavior near Xo,Xo + L [with alA )==J.. - 1/I6A): 

4> (x x ,A. ) ~ ~ ( I ) e - lalA )1>: - Xo) + ~ (I) eialA)(x - >:0) near x = x 
+ '0 2 - i 2 i 0' 

i ( 1) ., -i (1) . , 4> - (x,Xo,A. ) ~ '2 _ i e - ,alA )(>: - >:,,) + -2- i e,alA )(x - Xo) near 

4> + (x,xo,A. ) ~ ~ (~) alA. )eia(A)x - Xol - + ( ~ i) b (A. )e - ialA IIx + x,,) 

_ ~ (~) b (A. ) eialA )Ix + x,,) + ~ ( I .) alA. )e - ia(A IIx - Xo) near x = Xo + L, 
2 / 2 -/ 

+ -=!.... . b (A. ) eia(A IIx + Xo) + ~ . a(A)e - ia(A )(x - Xo) . (1) - . ( 1 ) 
2 / 2 -/ 

near x = Xo + L, 
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~_(X,xo,A)- ~i C) a(A.)eia(A){X-Xol+ ~(~Jb(A.)e-ia(AlIx+xol 

+ ~ i C) b (A. ) eia(A )(x + xol + ~ (~i) alA. )e - ia(A ){x - x,,1 near x = Xo + L, 

from which we find 

Ll (A. ) = <P + ,I (XO + L,xo.A ) + <P _ ,2 (XO + L,xo.A ) = alA. )e - ia(A IL + alA. )eia(A IL. (A8) 

Now,forA. real, Eq. (A7) yields a(A.) = a*(A.). Thus we write a (A. ) = la(A. )leipha(AI,a*(A.) = la(A. )le-ipha(AI, and (A8) becomes 

Ll (A. ) = 2Ia(A. )1 cos[a(A. )L - pha(A.)], A. real. (A9) 

APPENDIX B: DERIVATION OF THE DECOMPOSITION 
FORMULAS 

In Ref. 25 the e function we have defined in the paper is 
denoted ()4' and there are similarly defined e functions 
() 1 '(}2'(}3' In fact, in terms of (}i' the N = 1 sine-Gordon e­
function representation becomes 

( ) 2 '1 (e(/(x,t)+!;B)) 
U x,t = I n -e (I (x,t };B ) 

= 2i In ( (}4(1 (x,t );B) ). 
(}3(1 (x,t );B ) 

We then show the ratio (}4(I;B )1(}3(/;B) is given by 

(}4(1;B) _ i(}2(1 + B 12 + !;B). 
(}3(/;B) - (}2(1 + B 12;B ) , 

(BI) 

then we use the infinite-product representation of (}2 in the 
form 

(}2(/;B) = (constant)ei11"1 IT (I + e211"ilnB - II ) 

n=l 

o 
X IT (1 + e -211"1I nB - I )). 

Combining these facts with formula (V.ISb) for I (x,t) yields, 
after some manipulation, 

(}4(I;B) 

(}3(1;B) 

where 

IT
'" I - iea

" 0 1 - iea
" 

--. -a IT (- 11 . a' 
n ~ 1 1 + Ie .. n = - 00 I + Ie " 

an = K(X - xo) + wt + 2nrriB. 

Using this infinite product in the formula (BI) for u(x,t) 
yields Eq. (V.I8) in the paper. 0 

APPENDIX C: PROOF: SPATIAL SYMMETRY <=> 
SPECTRAL SYMMETRY 

The following proof is based on a whole-line argument 
by E. Overman. Consider any solution 

~ = (<Pdx,E)) 
<P2(x,E) 

of the Takhatajian-Faddeev eigenvalue problem, (VI.4); 
then define the function l/1(x,E ) by 
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( 
eli/4)Ulxl<pl(x,E) ) 

l/1(x,E )= e( - i/4Iu(X)<P2(X,E) . (CI) 

With ( )' = d Idx( ), it easily follows that", satisfies the 
associated eigenvalue problem 

( - t{!2 + ~ ~(X)t{!2) 
+ ( _1_ e(il2)u(xl _ E 1/2el - i/2IUIXI)." = 0 

161/E '1'1 , 
(C2) 

(t{!1 + ~ ~(X)t{!I) + (I6~Eel-il2lU(X)- EII2eliI2IUIX')t{!2 

=0. 

Looking ahead to the spatial symmetry, we also define 

~(x,E )=="'( - x,E). (C3) 

With this foundation, we now assume, as in Theorem 
V1.2, symmetry of the potentials: 

(~( - x),~( - x)) = (~(x),v(x)). 

Inserting into (C2), we find 
Lemma C I: The following statements are equivalent. 

(1) ",(x,E) solves (C2) at E. 

(2) (t{!2( -X,l/16
2
E)) = (<P2(X,l/16

2
E)) 

t{!1( -x,l/162E) <Pdx,l/I62E) 

solves (C2) at E. 

The symmetries in the spectrum are displayed with the 
Floquet discriminantLl (E); recall the "Eigenfunction Repre­
sentation of L\ (E )," Eq. (11.12) (with xo=O), 

Ll (E) = <P +'1 (L,E) + <P _)L,E), (C4) 

where ~ ± (x,E) are the basis for the Takhatajian-Faddeev 
eigenvalue problem (VI.4) normalized by 

~+ (x = O,E) = (~). ~_(x = O,E) = G). (C5) 

Thus, ~ ± (x,E) are two particular cases of the function ~ 
above, and following the relations (CI) and (C3) we define 

.1, ( E) 'I'±,I , 
( 

eli/4lulx) A. (x E) ) 

'I' ± x, == el - i/41ulxl ¢ + 2 (x,E) , (C6) 

~± (x,E) = '" ± (- x,E). (C7) 

We also note the initial conditions, which follow from (C5), 
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(
e1iI4\ JIX\) ( ° ) 

¢±(O,E)= 0 ,¢_(O,E)= el-iI4)li(o\' 

and the boundary condition 
(CBa) 

( 

e(il4. ~(L) A. (L E) ) 
1/1 (LE)= 0 'f'±.l , 
±' e( - i14) ~(L) ¢ ± .2 (L,E) . 

We aim to relate J (E) with J (1/162E), where 

J (E) = ¢; +.1 (L,E) + ¢; _ ,2(L,E) 

= ¢;+,I( -L,E) + ¢;-,2( -L,E), 

(CBb) 

J (1/162E) = ¢; + ,1 (L,1/162E) + ¢; _ ,2 (L,1/162E), 

The approach is to map from cf. + to * + using (C6), and 
then connect'" + at E and 1/ 162 E using Lemma C 1. 

From Lemma C 1, we know 

'" + (x,E) = (1/1 ± ,I (x,E )) 
- 1/1 ± ,2(x,E) 

and 

J (1/162E) = ¢; + ,1 (L,1I162E) + ¢; _ ,2(L,1/162E) 

(
tf;±,2( -X,1/162E)) 

tf; ±,d - x,1I162E) 

are solutions of the same Eq. (C2); using the initial conditions 
(C8) atx = 0, 

(
tf; ±,2 (0, 1I162E 1) = {eli/4lUIOI G) 
1/1 (01l162E) . 

± ,1 , e( - i/4Iu(O) (~) 

we find that the eigenfunctions are proportional: 

(C9) 

Thus, we compute 

= el - i/4}ulL 'if; + .1 (L, 1/162 E 1 + e(i14Iu(L I if; _ .2 (L, 11162 E) 

= el - i/4Iu(L }e(il2}U(O)1/1 _ ,2 ( - L,E ) + eli/41uIL lei - il2)U(OItf; + .1 ( - L,E ) 

= e{i/2)[ u(O} - u(L II¢; _ ,2 ( _ L,E) + e(i/21[u(L) - ufO)]¢; + ,1 ( - L,E ), 

f , 
" _/ 

Case (i) 

El < E2 < 0 

Case (ii) 

E 2 ;:: Ei' ~ :::: phEi < J( 

Canonical a, b cycles Useful Contours 01' Iotegt'ation 
Case (iii) 

E2 = E~, 0 < phE1 :S % 

FIG. 22, Canonical a.b cycles and useful contours of integration for all 
N = I cut structures. 
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From the periodicity of ~(x), 
u(L) - ~(O) = 21TM, M="charge of ~(x)," 

we find 

J (1/162E) = (- I)MJ (El. 

The argument can be reversed in the following way. 
Note that Lemma Cl holds if and only if (~( - xl, 
v( - xl) = (~(x),v(~)). Equatin~,d (~) and (- I)M,d (1/16

2
E) 

implies (u( - L ),v( - L )) ~ (u(L ),v(L )). The result then fol­
lows using periodicity of u(x),v(x). 0 

APPENDIX D: ELLIPTIC INTEGRAL FORMULAS 

The normalization constant C and period "matrix" B 
are both expressed in terms of two fundamental loop inte­
grals, which we denote! (a),! (b ). With the branch cuts of Fig. 
9, we denote canonical paths by "a" and "b "cycles as shown 
in Fig. 22. where we also depict useful contours of integra-

FIG. 23, Graphic limit as phE,:1T--O.IE,i constant. 
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tion for each structure. In terms of the holomorphic differen­
tial dl =dE / R (E ),R 2(E ) = E (E - E I)(E - E 2), we define 

Then the constants C and B are explicitly given by 

C= 1//(a), B=/(b)//(a). 

I(a)= fdl, I(b)= tdl. We now display the detailed information in Tables I-IV. 

TABLE I. General structure of the loop integrals I (a),/ (b ), normalization constant C, and period matrix B. 

In the notation of Fig. 22,/(a),/(b) have the following representations in terms of the contours a,./3,; the explicit facts then follow by routine complex 
integration, with C = 1/I(a),B = I(b )/l(a). 

Case (i): 

Case (ii): 

Case (iii): 

I (a) = 2 ( dl ; I (b) = i dl Ja, P, 

=>1 (a) <0, Re/(b) = 0, Iml(b) <0. 

=>C < 0, B = i 1mB, 1mB> O. 

l(a)=4Re ( dl ; I(b)= -!/(a)+2i dl+2ilmidl 
)~ ~ ~ 

=>1 (a) <0, Re/(b) = - !/(a), Iml(b)<O. 

=>C < 0, B = -! + i 1mB, 1mB> O. 

l(a)=4.Ldl+4ReLdl; I(b)= -!/(a)+2ilmL.dl 

=>1 (a) <0, Re/(b) = - !/(a), Iml(b)<O. 

=>C<O, B= -!+ilmB,lmB>O. 

TABLE II. Elliptic integral formulas for the normalization constant C and period matrix B. 

The loop integrals I (a), I (b ), and thus the normalization constant C and period matrixB, can be expressed in terms offamiliarelliptic integrals .. '~ In detail (refer 
to Fig. 22 and Table I). 

Case (i): 

Case (ii): 

Case (iii): 

E,<E2<0, 

C = - (- E,)1I2/4K(s), 

B = iK '(s)/ K (s), 

where the modulus S2 = (E2 - E,)/- E,. 

E, = E!,E, oFE2,rr/2< phE, <rr, 

C= -IE,I'I2/4K(s), 

B = -I + [i/2K(s)][F(c,b,s') + F(t,b,s')], 

where S2 = 1(\ + cos(phE,)),s'2 = !(\ - cos(phE,)), 

c,b = arccos(s' /s"),t,b = arcsin(s/s'). 

E, = E!,E,oFE"O<phE,<rr/2, 

C= -IE,I'/'/4[F(c,b,s)+F(t,b,s)], 

B = -I + iK (s')/[2(F(c,b,s) + F(I/I,s))], 

where s,s',!/J,I/I are as defined in Case (ii). 

TABLE III. Soliton limit (E, = E, < 0) formulas. 

From the explicit elliptic integral formulas in Table II, the "soliton limit" as E"E, collide on the negative real axis is computed. The results are the same for 
each cut structure, E, <E, < 0 and E, = E !,E, oFE,. (Refer to Figs. 15 and 22.) 

lim I (b ) = 2 [ dE = _ i 00, 

F., .. F., E, (E - E,) V E 

lim I(a) = { dE = _ 2rri [residue at E,l = - 2rr , 
F., .. E, )IE-E'I~.(E-E,)vE vlE,1 

lim L= + 00, 
£''-''£, 

lim K(x-xo)+wt= [x-xo-vt],v= 1-161E,1 
E, .. ", (I - v')'/' 1+ 161E,\ 

(for the choice I U I < I). 
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TABLE IV. Contrasts in physical characteristics of the oscillatory states in terms of E"E r. 

To display the difference in the (subcharacteristic speed, U 2 < I) oscillatory states based on the relative location of E, = E T ,E, =I E" we consider two limits 
that essentially "cover" the E-plane. First, we display the "angular dependence" of the physical characteristics, and second the "radial dependence." 

I. Fix IE,l==const, and consider phE,: IT''''O (see Fig. 23) 

E = Energy: + I .... - I. 

u" = Amplitude of oscillation = phE, :IT''''O. 

K=wavenumber=2lTICI(I+ I 112):(VIE'1 +,/4
IEI

) .... 0. 
Im(B) 16(E,E,) 4 v, 

(v = Frequency = 2lTIC I (I _ I , ): ( - VIE,I + _4_ ) .... 0. 
Im(B) 16(E,E,)II- 4 vlE,1 

1mB 0: separation distance between crests: + 00 .... 0. 

IC 10: "idth of each kink (antikink) component:ViE,I""O. 

We note that each of the above limits is monotone decreasing. 

2. Fix phE, ==constant, and consider IE,I: 0 .... 00 

E = Energy = - cos(phE,) remains constant, independent of IE,I. 

u" = Amplitude of oscillation = phE, remains constant, independent of IE,I. 

K=Wavenumber: + 00 decreasingtoK"u"I,le, -\6 = I,increasingto + 00. 

(v = Frequency: + 00 decreasing to - 00 ,(V i, Ie, I 16 = O. 

1mB 0: Separation distance between crests remains constant. 

I C I 0: Width of each kink (antikink) component: 0 .... + 00. 
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New sum rule for products of Bessel functions with application to plasma 
physics 

Barry S. Newberger 
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In our investigations of the linear theory of the stability of relativistic beam-plasma systems 
immersed in a magnetic field we have been led to consider sum rules for an infinite series of 
products of Bessel functions of the form ~: ~ _ 00 (n jJ~ )/(n + f-l). In this work we report on the 
sum of this series treated as a special case of a more general infinite series. We also mention the 
extension of the results beyond the range of the parameters for which formulae are explicitly given 
and indicate how intermediate results obtained may be useful in their own right. Finally, an 
additional application of our result is indicated. 

PACS numbers: 02.30.Gp 

I. INTRODUCTION 

In considering the linear theory of the stability of a 
charged particle beam penetrating a magnetized plasma, one 
is confronted with an infinite series of products of Bessel 
functions of the form 

00 

L 
11.= - 00 

or similar series which can be obtained from it by differenti­
ation with respect to z. In the context of the physical prob­
lem, f-l is essentially the ratio of the Doppler shifted wave 
frequency as seen by an individual particle in its orbit to its 
Larmor frequency. The variable z is essentially the product 
of the wavenumber of the mode perpendicular to the mag­
netic field and the Larmor radius of an individual particle. 
The dispersion relation is obtained by an integration over a 
distribution of particles and, hence, a numerical investiga­
tion of the dispersion relation is complicated considerably by 
the presence of the infinite sums. This is especially true when 
one observes that the rates of convergence may vary widely 
as the parameters vary over the physically interesting do­
main. Furthermore, one would like to obtain analytic results 
in limiting cases, particularly those of large and small mag­
netic field. The latter case corresponds to the asymptotic 
regime in f-l and progress can only be made if a sum rule can 
be found. Results from the application of our sum rules to 
the plasma physics problem have been presented. I 

As will be seen in the work to follow, a sum rule can be 
obtained for the more general case 

00 

L 
( -ltnjJa_ynJf3+yn 

n+f-l 
from which our required result follows as a special case 
(a = /3 = 0, r = I). Here, as above,j is a nonnegative integer 
and, in our specific application, runs from 0 to 2 but will not 
be so restricted in the results to follow. A special case (a = /3, 
j = 0) of our result has been given? 

In the following section, we will sketch the derivation of 
the desired sum rule. Our method is direct calculation. In 
Sec. III, we will discuss extension of the results to parameter 
ranges beyond those for which formulae have been given. 
Furthermore, given the result for j = 0, it is easily shown 
that it follows from a contour integration. This is also briefly 

discussed in this section. On the other hand, whenj#O, the 
contour integration method has difficulties in that one can­
not ensure that the integrand dies off sufficiently rapidly as 
the contour is enlarged to 00. The direct method illustrates 
the difficulty explicitly and shows how it can be circumvent­
ed. The applicability of the method to other series is also 
discussed here and one example is given. In the last section, 
applications will be briefly addressed. Included will be ex­
plicit results for our own special case, an infinite series which 
has appeared in the solution of a particular differential equa­
tion arising in an electrical engineering problem, which has 
come to be called "Turkin's" function, 3 and a brief discus­
sion of the application of certain "intermediate" results. 

II. DERIVATION OF THE SUM RULE 

In this section we present the derivation of the sum rule 
for the infinite series of the form 

00 

S= L 
n = - ao 

( -ltnjJa_yn(z)Jf3+yn(z) 

n+f-l 
(2.1) 

where j is a nonnegative integer, f-l is nonintegral but other­
wise complex and unrestricted, and z is a complex parameter 
as are a and /3. We restrict them, for the moment, to satisfy 
Re(a + f3 ) > - I. The parameter r is real and restricted to 
the interval (0, I]. 

It is useful to rewrite S in the following way: 
00 

S= L 
11. = - 00 

(2.2) 
n = - 00 

We will suppress the variable z throughout this section. We 
now consider the two sums separately: 

and 

n = - 00 

( - l)nJa _ yn Jf3+ yn 

n+f-l 

(- I)n[nj - (-f-l)j]Ja- yJ f3 + yn 

n+f-l 

(2.3a) 

00 j- I 

L (-1)" L (-I))J,knj-l-kJa_yJf3+yn· 
11.=-00 k=O 

(2.3b) 
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We will consider S I first. 

( _l)nJ,,_ynJp+yn 

n+f.l 
2 00 ( - 1 t i"/2 

=- L -- Jcx+p(2z cos 0) 
rrn~-oon+f.l 0 

Xcos((2yn - 7J)B J dB, 

where 

7J=a - f3, and Re(a + f3 ) > - 1 . (2.4) 

The integral representation of the product of Bessel func­
tions is well known.4 

Expanding cos[(2yn - 7J)0 ] and separating the summa­
tion into a pair of sums over odd and even values ofn, respec­
tively, gives 

2 i"/2 SI = - dO Ja +{3(2z cos 0) 
rr 0 

X {cos TJB I 1- cos[(4n + 2)ye + cos 4nYB1 
2 n ~ _ oc n + /t12 + 1/2 n + f.l12 

+ sin 7Je i: [_ sin [(412 + 2)ye J 
2 n = _ oC n + f.l12 + 1/2 

+ sin 4nye ]} , (2.5) 
n + f.l12 

there being no difficulty with the interchange of orders of 
summation and integration. 

Further expanding the trigonometric functions, we find 
we must evaluate sums of the form 

00 {
COS 4nye} 
sin 4nyB {

COS 4nYB} 

i: sin 4nyB 

n =- 00 n + /t12 + 1/2 
Using the formulae5 

n + f.l/2 
and L 

n = - 00 

and 

cos n¢ 
---= 

n = - et:J n-a 

1T cos a(rr - ¢ ) 
sin rra 

OC sin n¢ rr sin a(rr - ¢ ) L --= , O<¢<2rr, 
n ~ -- 00 n - a sin 1Ta 

where a is nonintegral but otherwise unrestricted, we have 
forSl' 

1279 

{ 

Ll ( cos [ 1T/2 + f-L12{1T - 4ye)1 X cos 7Jo - -~---'-~--'---'--';';"" 

sin [(.u/2 + l/2)1T] 

+ coS[f.l~2(1T - 4ye )] J 
sm f.l1T/2 

+ . Ll ( sin [1T12 + f.l12(1T - 4ye)] 
SIn TJO - --'----'----'----.:.---:.~ 

sinftu/2 + 1I2)rrJ 

+ sin [f.l12( rr - 4yB )] J} 
sin !-lrr/2 
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(2.6a) 

or 

1 1"12 SI= deJa+{3(acosB) 
sin (.u1T/2)costu1T12) 0 

X (cos 7Je ! sin(.u1T12)sin [f.l12(rr - 4yB)] 

+ cos(.urrI2)cos [!-l/2(1T - 4ye)] 1 
+ sin TJB ! - sin(.u 1T /2 )cos [!-l12( rr - 4ye )] 

+ cos(.urr/2)sin [f.l/2(1T - 4ye)) J). (2.6b, 

Simplifying the trigonometric functions reduces SI to 

I i1712 
deJa+p(acose) 

sin(.u rr /2 )cos(ti rr /2) 0 

Xcos[(7J + 2Yf.l)e]' (2.7) 

or, upon employing the integral representation for the pro­
duct of Bessel functions once again, 

rr 
SI = -.-- Ja + YI" (z)Jp _ Yi' (z), (2.8) 

sm /trr 

which is the desired result. 
We now proceed to consider S2' Eq. (2.3b). Interchang­

ing orders of summation, it is sufficient to consider a sum of 
the form 

00 L (-ltnPJa_yJp+yn, p integer, 

xcos[(2yn - 7J)B] . (2.9a) 

Again expanding cos[(2 yn - 7J)B ] and observing that we can 
absorb the factor nP by differentiation with respect to 2ye 
p times, we have 

( 1 f" 00 (11"12 
52 =2 -rr n=~oo (-It Jo dBJa+p(2zcosB) 

[ 
B d P {cos 2nrB} 

X cos 7J d (2yB Y sin 2nyB 

. e d P {Sin 2nrB}] +sm , 
7J d (2ye Y' cos 2nye 

(2.10) 

where we define 

p* = p/2, p even 

= (p - 1)12, P odd, 

and the upper term in braces pertains if p is even and conver­
sely if p is odd. 

One is now tempted to interchange orders of summa­
tion and integration but is then confronted with infinite se­
ries which do not converge in the ordinary sense. Progress 
can be made by appealing to the theory of generalized func­
tions. 6

,7 This allows us to proceed formally. 
Interchanging orders of summation, integration, and 

differentiation, we first observe that the sine series vanishes. 
Thus in Eq. (2.10), the first term in square brackets pertains if 
p is even and the second pertains if p is odd. We will denote 
this in what follows by a subscript e or 0 as appropriate in the 
pth order derivative. Separating sums over even and odd val­
ues of n as before, we have 
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A 2( - !)pO i1r/2 
S2= dOJa+p(2zcosO) 

1T 0 

X {[cos 7]0 d P + sin 7]0 _d_
P
_] 

d (2yO Yo d (2yO Yo 

X [ - n~~ 00 COS[(2n + 1)(2yO)] + n~~ 00 cos 47110 ]}. 

(2.l1) 

Expanding the trigonometric functions and again observing 
that the sine series vanishes, we are left with 

A 2
P

( - 1( i21rY 

(( x )) S2 = 2ry 0 dx Ja +p 2z cos 4y 

X cos - -+sin ---{ [ ( 
7]X ) d P ( 7]X) d P ] 

4y dx~ 4y dx~ 

X[(I-COS ~)n~~oo cosnx]}, (2.12) 

where x=4yO. 
We now assume that Re(a + /3 »p. This certainly en­

sures that the pth derivative of Ja + P is integrable. We will 
return to this assumption in the next section. 

Since the integrand is an even function of x, we will 
integrate over the full interval [ - 21TY, 21TY] and take half 
the value obtained. Integrating by parts p times and observ­
ing that, under the assumption that Re(a + /3 »p, the inte­
grated terms vanish, we have 

A 2P( - 1(( - lY' 
S2 = ---'---'--'--'-

4ry 

where the upper term in [ ] pertains if p is even and the lower 
if p is odd. Now using a result in the theory of generalized 
functions,6.7 we put 

00 00 

I cos nx = 21T I c5(x - 2n1T), 
n = - 00 n = - 00 

and 82 becomes 

8
2 

= _2P..:...( -_1,-(-,-( _-_I-,-Y' 
2y 

J2
1rY 

d d P {J (2z (x)) [cOS(7]X/4Y)]} 
X _ 21rY X dxP a +fJ cos 4Y sin(7]x/4y) 

X(I-COS(~))n~~'" c5(x-2n1T)dx. (2.14) 

The result for 82 now follows immediately. If y < 1, only 
the n = 0 term in the sum contributes. If y = 1, both the 
n = 0 and n = 1 terms contribute. Furthermore, in the case 
y = 1, the c5-functions act at the end points of the integration 
and, hence, only contribute one half the value they otherwise 
would. We now define 
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H (x)=O, x < 0, 

=!, x=O, 

=1, x>O. (2.15) 

We also observe that by virtue of the [1 - cos(x/2)] 
term, the contribution from n = 0 vanishes. The extension to 
yon the interval (1,2) is also immediate. We will discuss this 
again briefly in the following section. Thus we have, evaluat­
ing [1 - cos(x/2)] at x = 21T, 

8
2 

= H(y _ 1) 2P
( - 1(( - lY' 

y 

d
P 

{J (2z (x ))[cOS(7]X/4Y)]} I 
X dxP a+p cos 4Y sin(7]x/4y) X~21r' 

(2.16) 

Substituting into (2.2), we arrive at our final expression for S: 

S= 1T( -I-IVJa + Y!1(z)Jp- YlJz) 

sin 1Tf-l 

_ H(y-l) _2/- 1e (E-)k[(_I)U-l-k)/2] 
( ) Io 2 ( _ l)u - 2 - k )12 

Y k~O 

dj 
- 1- k { ( J x )) [COS(1JX/4Y)]} I 

X dxi- 1 - k Ja+
p 2zcO\'4y sin(1JX/4Yl x~2rr' 

(2.17) 

where again the upper term in [ ] pertains if} - 1 - k is even 
and the lower if} - 1 - k is odd. We have appended the 
superscript e and sUbscript 0 to the summation symbol as a 
reminder. 

III. EXTENSION OF THE RESULTS 

In this section we will discuss the validity of our results 
for values of the parameters outside their domains of restric­
tion imposed in Sec. II. It is convenient to consider S 1 and S2 
separately. 

We have shown that Sl as defined in Eq. (2.3a) is, as in 
Eq. (2.8), equal to 

sin 1Tf-l 
forO<y<l, Re(a +/3» - 1, 

and f-l complex but non integral. Thus, Sl considered as a 
function of a, /3, or y is analytic since the Bessel functions are 
entire functions oftheir order. It follows by analytic continu­
ation that the restriction on the real part of a and /3 is lifted 
and that, as far as Sl is concerned, y can be any complex 
number. It also follows from Eq. (2.8) that SI is a meromor­
phic function of f-l, with poles at the integers. It is interesting 
to observe that if we take Eq. (2.8) to be the definition of SI 
then the infinite series Eq. (2.3a) follows immediately from 
the expansion formula for meromorphic functions,8,9 pro­
vided Re(a + /3» - 1, since there isa closed contour eN on 
which lIsin 1Tf-l is bounded as the length of the contour 
L---+oo, and one can easily show that IJa - Y!1Jp + Y!11 
= 0 (If-ll- N -1) for fixed N such that Re(a + (3 »N. 

The situation with S2 is slightly more complicated. Our 
results have been derived under the assumption 
Re(a + /3 »p. We observe, however, that S2 from its defini­
tion Eq. (2.9a) is an entire function of a and (3. This is also 
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true of the expression (2.15). Thus, by analytic continuation 
the result holds provided only that the required derivatives 
of the Bessel functions exist at zero. Thus, the condition 
Re(a + /3 »p is sufficient but not necessary. An example is 
a + /3 = O. Our application to a problem in plasma physics is 
a special case of this with a = /3 = 0 and results are illustrat­
ed in the following section. 

To extend the range of r beyond 1, care must be taken to 
include the additional terms in the sum over l5-functions. 
That is, Sz is discontinuous at the integers; for example on 
the interval (1,2), the term in Eq. (2.16) which appears for 
r = 1 is multiplied by 2 and the function H we introduced 
earlier achieves this extension automatically. In principle 
one could continue along the r axis in this way and thereby 
extend the results to arbitrary real r. We note too that since r 
appears symmetrically, our results embrace negative real r 
and we need not concern ourselves with such values of r 
specifically. 

Finally, we remark that the results we have derived can 
be immediately taken over to the case where the infinite 
sums involve the modified Bessel function of the first kind. 

We wish to remark here that it was not our intent to be 
exhaustive. We confined our attention to the specific series 
arising in the physical problem of immediate interest. N ever­
theless, the method appears to be easily applicable to other 
similar series. Furthermore, since it is straightforward, we 
would expect such generalizations to be immediately trans­
parent. As a case in point, consider a result of Kendall 10 

which established the following: 
00 

r L Ja _ ny (Z)J8+ny(Z) = Ja +8(2z), (3.1) 
n = - 00 

forO < r < 2. Our method used to sum S2 immediately gener­
alizes this result to all finite r: 

00 

r L Ja _ ny (z)J8+ny(z) 

f H(r-k)Ja+8(2zCOS k11')cos(7J
k

11'), (3.2) 
k=O r r 

where 7J and H are as defined in Sec. II. Indeed, this result is 
simpler to obtain than that for S2 in that the sum need not be 
broken into summation over even and odd n. 

IV. APPLICATIONS 

The immediate application is to the physical problem 
described in the introduction. It is a straightforward applica­
tion ofEq. (2.16), with a = /3 = 0, r = 1, andj running from ° to 3, to show 

and 
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~ n3J~(z) /L311'Jp.(Z)J _p.(z) 2 r 
~ --= . +/L +-. (4.4) 

n = - 00 n + /L S10 11'/L 2 
These sums are simple enough that they can be confirmed 
directly since explicit expressions for series of the form 

are ~vai~able forj small.2 This, however, sug~ests a further 
apphcatton of our results. The expression for S2' Eq. (2.15) is 
essentially an "inversion" formula for Neumann's expan­
sion of a polynomial in an infinite series of Bessel functions 
and a generalization ofSchlomilch's expansion of the type 
~nPJ" to products of Bessel functions. 4 

Finally, we mention an application to an infinite series 
of products of Bessel functions which appears as the Fourier 
coefficients of the solution of a certain differential equation 
arising in a problem in electric circuits. Numerical values of 
this series, which has been called "Turkin's" function, have 
been given in a publication of the Ministry of Communica­
tions of the USSR. 3 Turkin's function is defined by 

T () 
~ J,.(z)J,,_m(z) 

m z, a = ~ , m integer (4.5a) 
n=-oo n-a 

= ( _ l)m f ( - 1) nJ,,(z)J m - ,,(z) . (4.5b) 
"=-00 n-a 

This is clearly a special case of our result forj = O,/L = - a, 
r = 1, a = m,/3 = O. Thus we have 

( It11' 
Tm(z, a) = - ~ Jm_a(z)Ja(z). (4.6) 

S10 a11' 

This result simplifies considerably the numerical evaluation 
of Turkin's function. 
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It is known that many of the Special Functions of mathematical physics appear as matrix elements 
of Lie group representations. This paper is concerned with a beginning attack on the converse 
problem, i.e., finding conditions that a given function be a matrix element. The methods used are 
based on a combination of ideas from system theory, functional analysis, Lie theory, differential 
algebra, and linear ordinary differential equation theory. A key idea is to attach a symbol as an 
element of a commutative algebra. In favorable cases, this symbol defines a Riemann surface, and 
a meromorphic differential form on that surface. The topological and analytical invariants 
attached to this form playa key role in system theory. The Lie algebras of the groups appear as 
linear differential operators on this Riemann surface. Finally, it is shown how the Picard­
Vessiot-Infeld-Hull theory offactorization oflinear differential operators leads to realization of 
many Special Functions as matrix representations of group representations. 

PACS numbers: 02.30.Gp, 02.40. - k, 02.1O.Sp, 02.30.Jr 

1. INTRODUCTION 

One classical way to study the Special Functions is to 
describe them as solutions of linear ordinary differential 
equations with analytic meromorphic coefficients. 1.2 More 
recently, it has been recognized that they also arise as matrix 
elements3 of Lie group representations, and that many of 
their properties are more naturally related to this genesis. 
However, the relation between these two descriptions has 
not been studied in detail. The purpose of this paper is to 
present work aimed toward linking the two basic ap­
proaches, using hybrid methods coming from linear system 
theory,4~ classical analysis, the Picard-Vessiot theory7-1O of 
differential algebra, and Riemann surface theory. II 

A topic in mathematical system theory4~ called the 
realization problem deals with the relation between the two 
approaches. There one asks how a continuous complex val­
ued function t-f(t ) ofa real variable, Oq < 00, may be repre­
sented in the form 

(1.1) 

where v is an element of a topological vector space V, v dan 
element of its dual, and t_ e At is a one parameter continuous 
semigroup of operators on V. There is also a more general 
question of realizing a matrix function of t, 

(

'11 tit ), ... ,fln (t) ) 

f(t)= : 

fml (t ), ... ,fmn (t) 

(1.2) 

(1.3) 

aj A revision of "Infinite Dimensional Linear Systems, Riemann Surfaces, 
and Lie Group Harmonic Analysis, Part I " (unpublished). 

bj Supported by a grant from the Ames Research Center (NASA), # 
NSG2402, from the Army Research Office, # ILIGII02RHN7-
05MA TH, and from the National Science Foundation. 

where (vf, ... ,v~) and (v!>'''v n ) are elements ofv d and v, re­
spectiVely. The first is called the scalar, the second the multi­
variable case. Similar realization questions also appear fre­
quently in probability and statistics. 

In the system theory literature, this is presented in a 
slightly different form, emphasizing the input-output pro­
perties, and utilizing the basis-free methods of modern linear 
algebra. Namely, one is given three vector spaces (V,U,Y) 
called the state, input, and output spaces, respectively, a tri­
ple (A,B,C) oflinear maps 

A:V_U, 

B:U_V, 

C: V_Y, 

(1.4) 

and a system oflinear, time-invariant differential equations: 

dv 
- =Av +Bu, 
dt 

y=Cv. 

The solution of (1.5) with zero initial conditions 

viOl =0 

is then 

y(t) = L CeA(l-r)Bu(r) dr. 

The map 

input curves-output curves 

( 1.5) 

(1.6) 

(1.7) 

is a Volterra integral operator whose kernel is the function 
(which is a matrix-valued function when bases are chosen for 
Uand Y) 

t-C exp(tA )B. ( 1.8) 

In the system theory literature,4--6 there is a complete 
answer to the question of existence and classification of such 
state-space realizations under some sort of natural "equiv­
alence" only in case the elements of the matrixfare functions 
of t of a special type, namely, they belong to the vector space 
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(that we will call &l offunctions which are a finite sum of 
those of the form 

t j ei', j integer;;;'O, ..tEe. 
(1.9) 

[These are the functions that are precisely the inverse La­
place transform of rational functionsD (s):s_F (s) of the com­
plex variables, which vanish at s = 00. In the harmonic anal­
ysis literature, these functions are called exponential 
polynomials.] In fact, these results (proved in definitive form 
only in the early 1960's) have played an important role in the 
algebrazation of system theory in the last 20 years. The key 
fact here is that V can be taken to be a finite-dimensional 
vector space, so that the methods oflinear algebra and finite­
ly generated module theory suffice. 

There have been many generalizations of these basic 
results to wider classes offunctions. These mainly are based 
on various ideas of functional analysis. However, in certain 
of these papers, 12-14 there are indications that the Special 
Functions, and their genesis in Lie group harmonic analysis, 
playa role. 

The purpose of this paper is to build stronger links 
between this dual genesis of the Special Functions. It will 
also give us the opportunity to adapt certain aspects of the 
general machinery of functional analysis, linear ordinary 
differential equation theory,15 and differential algebra9

•
10 to 

this problem. The treatise by Y os ida 16 will be the standard 
reference for the functional analysis material. 

2. THE TITCHMARSH ALGEBRA 

Let R+ be the non-negative real numbers. We will also 
denote it as [0,(0). Let C (R +) be the vector space of contin­
uous, complex-valued functions on R+. An element 
IEC (R +) is a continuous map 

fR+-C, (2.1) 

t_/(t ), t;;;.O. 

Introduce the operation 

(f1,fJ-/I */2' 

(fl */2)(t ) = f It!'r)f2(t - r) dr. 

(2.2) 

(2.3) 

It is called the causal convolution. It makes C (R +) into a 
commutative associative algebra. By a theory of Titch­
march l6.17 this algebra has no divisors olzero. We will call 
this the Titchmarsh algebra. 

A unit element can be added to the Titchmarsh algebra 
(in this case it is just the Dirac delta function) to make an 
integral domain. The quotient field, denoted by vii is the 
basic object in the Mikusinski theory of generalized 
functions. 17 

C (R +) has another important algebraic structure, 18 
namely, it is a differential algebra, i.e., there is a linear map 
d: C(R+)-C(R+l such that 

d (fl */2) = d/l */2 + II *d/2, 

for II' 12EC (R +), 

d (f)(t ) = ti(t ). 
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(2.4) 

(2.5) 

This differential algebra structure on C (R +) (and on the quo­
tient field vii considered by Mikusinski) plays a basic role in 
certain system-theoretic questions. 

3. PICARD-VESSIOT INTEGRAL OPERATORS AND THE 
GALOIS GROUP 

We have just seen that associated with any linear inte­
gral operator of the form 

y(t) = f I(t - r)u(r) dr (3.1) 

there is assigned an elementl (which is its symbol) in a com­
mutative differential algebra 

(C(R+),*,d). 

We can now make use of ideas of differential algebra to study 
the algebraic properties of such operators. 

Consider linear operators 

D: C [0, 00 )-C [0, 00 ) 

of the form 

D=rn*dn+ ... +ro* (3.2) 

with ro, ... ,rnE&l. Let us say that the operator (3.1) is of Pi­
card-Vessiot type if there is aD ofthe form (3.2) such that 

DU) = r, (3.3) 

for some re&l. 
Given an/EC (R +), which satisfies an equation ofthe 

form (3.3), we assign to/a subfield &lU) of vii as follows: 
&l(f) is the smallest differential subfield of vii contain-

ing &l,J, and all solutions ofthe homogeneous equation 

D(h)=O, 

hE vii. 

Definition: The Galois group of the integral operator 
(3.1) is the group of automorphisms of the differential field 
&lU) which leave fixed each element of &l. 

In this paper, we will not pursue in detail this purely 
algebraic approach. Assuming &lU) can be generated by 
elements that are Laplace transformable,9 &lU) is isomor­
phic to a Picard-Vessiot field of analytic functions, in the 
classical sense. 10 It is known2 that, at least for certain type's 
of such fields, the Picard-Vessiot group is related to the alge­
braic closure ofthe monodromy group. 2 This gives us a way of 
approaching the subject that is much closer to traditional 
mathematical physics. We will now review some relevant 
material. 

4. LAPLACE TRANSFORM 

It is well known9 that the Titchmarsh algebra structure 
can be studied by the Laplace transform 

..t"U)(s) = loo e - s'f(t) dr. (4.1) 

On the submanifold of C (R +), where the Laplace transform 
exists in some appropriate sense, it transforms the product 
(2.3) into the ordinary product of functions 

(4.2) 
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We also have 

5f'(d/) = !i 5f'(/). 
ds 

(4.3) 

Thus, to the extent that the Laplace transform is defined, the 
"differential algebra" {C(R+),*,d J is translated over to "dif­
ferential algebra" in the classical Picard-Vessiot sense, in­
volving linear, ordinary differential operators with analytic 
coefficients. 

Let us now be more precise about these ideas, and define 
subspaces of C (R +) in the following way: For SEC, set 

C(R+,s) = {/EC(R+):I/(t)l<e st I for all t;;.Oj, (4.4) 

L J(R+,lesl Idt )=set of Lebesgue measurable maps: 
R + -C which are absolutely integra­
ble over 0<1 < 00 with respect to the 
measure Ie - sl Idt. (4.5) 

Then 

C(R+,s)CL I(R+,s') (4.6) 

if the real part of (s' - s) > O. 
Notice that these are precise classes of functions to 

which the classical theory of Laplace transform theory9 ap­
plies. One of the areas to be treated in this paper is the de­
scription of certain sufficient conditions, deriving from func­
tional analysis, 16 which imply that elements of C (R +), 
defined as matrix elements of semigroups, belong to these 
classes. We will also compare conditions of this nature aris­
ing from linear differential equation l5 and Volterra path in­
tegral theory. 20 These growth conditions will also playa role 
in the system-theoretic realization questions. 

5. HILLE-YOSIDA THEORY AND THE GROWTH 
CONDITIONS 

Let us now suppose that V is a topological vector space 
(Ref. 16, p. 25) with the complex numbers C as field of sca­
lars. Let L ( V, V) be the space of linear continuous maps: 
v_v. Let Vdbe the dual vector space, i.e., the vector space 
of continuous linear maps: V-c, (At least for the moment, 
we do not impose any topological structure on V d

.) 

Asemigroupin Vis mapR + -L (V, V), t_g(t), such that 
the following conditions are satisfied: 

g(O) = identity, 

g(t 1 + t2 ) = g(t dg(t2 ), for t l,t2ER +. 

(5.1) 

(5.2) 

For each VE V, the map t-g(t )v of R + - Vis continuous. 
(5.3) 

Given VEV, Vd_Vd, we can form the function 

fR+-C 

by the following formula: 

I(t) = (vd,g(t)v). (5.4) 

The function/. defined by formula (5.4), is then an element of 
C (R +). Weare looking for conditions that Ibelongs to the 
subsets C (R + ,s), L I(R + ,e - Sldt ), defined in Sec. 2, for some 
SE R +. Conditions of this sort are proved in Y osida's trea­
tise, 16 resulting from now-classical work by Hille and 
Yosida. 

1284 J. Math. Phys., Vol. 23, No.7, July 1982 

Theorem 5.1: Suppose that the topology on Vis defined 
by a Banach space norm. In addition, suppose that condi­
tions (5.1)-(5.4) are satisfied. Then, 

Proof For the proof, see Sec. 1, Chap. 9 of Ref. 16. 
Theorem 5.2: Suppose that Vis a sequentially complete, 

locally convex topological vector space. Suppose again, that 
conditions (5.1)-(5.4) are satisfied. Then, 

Proof See Sec. 3, Chap. 9 of Ref. 16. 

6. EXISTENCE OF THE LAPLACE TRANSFORM FOR 
FUNCTIONS DEFINED VIA LINEAR, TIME-DEPENDENT 
SYSTEMS 

In this section, we will use the theory oflinear ordinary 
differential equations l5 to prove that the Laplace transform 
of certain elements of C (R +) exists. 

Again, lett be a real variable, t;;.O. LetM (n, C) be the Lie 
algebra (under commutator) of n X n complex matrices. Let 
a: R + -M (n, C) be a continuous curve in M (n, C). Consider 
the linear, ordinary differential equation 

dx 
- = a(t)x +z(t) 
dt 

for the curve 

(

X(t)) 
t_ : =x(t) 

xn(t) 

(6.1) 

(6.2) 

in e. t_/(t) is a given continuous curve in C. Let t_/(t) be 
the element of C (R +) defined as follows: 

with 

I(t) = yTx(t), 

x(O) =xo, 

YEcn, yT = matrix transpose. 

(6.3) 

(6.4) 

Our concern is to find sufficient conditions (involving the 
data a, z, xo) that the Laplace transform/exist. The standard 
asymptotic theory of linear ordinary differential equations 
(Ref. 15, Chap. 4) provides one type of condition of this sort. 
The Volterra product integral formalism20 provides another 
technique for deriving such estimates. The results from the 
two techniques seem similar, hence we will only consider the 
method of Ref. 15 here. 

Let I I denote the standard quadratic norm on C and 
M(n, C). 

(6.5) 

lal = sup laxl, foraEM(n,C). 
XEC" Ixl 

(6.6) 

Then, using formula (6.2) of Chap. 4, p. 56 of Ref. 15, we 
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have 

Ix(t)1 < IXolexp LA (a(7))dr 

+ L Iz(rllexp fA ((a (s))ds dr, (6.7) 

where A (a) is the greatest eigenvalue of a + a*. From (6.3), 
we also have 

If(t)1 <Irllx(t )1· (6.8) 

Equations (6.7) and (6.8) give estimates that are useful 
for finding sufficient conditions that t-f(t ) have at most ex­
ponential growth, hence that its Laplace transform exists. 

Example:Jsatisfies a Sturm-Liouville equation 

d'l 
-2 = - a2J.f + uf (J. constant). (6.9) 
dt 

Convert this into a system in the usual way. 

f=xl> 

x=(:) 

dx = [( 0, 
dt -a, 

a) (0, 
o + ula, 

Hence, 

a= ( 0, 
- J., 

J.) ( 0, 
o + u(t)a- I , 

( 
0 u*a

o
-1*). 

a +a* = ' 
u,a- I

, 

Then, 

A(a+a*)= lu(t)a-II. 

~) ]x. 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

Equation (6.13), substituted into (6.7), gives sufficient condi­
tions for exponential growth. 

Of course, this is but the simplest of a whole series of 
sufficient conditions that the Laplace transform exists for 
solutions oflinear, ordinary differential equations. 

Another series of sufficient conditions for 

1''' e -"f(t )dt 

to exist is derivable from the hypothesis that t-f(t) is a ma­
trix element of a Lie group representation in a Banach space. 

7. LAPLACE TRANSFORM AND THE WEYL ALGEBRA 
OF LINEAR DIFFERENTIAL OPERATORS 

We now review another classical topic that is relevant 
to the system-theoretic problem, namely, the linear differen­
tial equations with polynomial coefficients satisfied by a 
function and its Laplace transform. 

Let "z" denote a complex variable. Let C[z] denote the 
polynomial in z with complex coefficients. A linear differen­
tial operator of the form 

d" 
D=Pn(z)-d +"'+Po(z), po,···,PnEC[zj (7.1) 

zn 

is called a Weyloperator. The operators form an associative 
algebra under composition called the Weyl algebra and de-
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noted by r. 
Consider the Laplace tranform 

(f)(w) = f e - ZWf(z)dz. (7.2) 

The integral in (7.2) is over a curve in the complex t plane, 
ranging from z = a to z = b. If D is a Weyl operator, then 
:f(Df) is obtained by applying a differential operator in z, 
which we call :f(D), to :f(f) plus some boundary terms. 
Let us formulate this algebraically in the following way. 

:f(Df) = :f(D)(:f f) 

+ f!!.- [(8 (D))(esJ)]dt, 
dt 

where es is the function t---+ e - sl and 

8 (D ):(f1J2)-8 (fIJ2) 

is a bilinear differential operator in the functionsflJ2' 
In particular, then, we have 

:f(Df) = Y(D )(:ff) 

(7.3) 

(7.4) 

for all functions on r which are Coo, but vanish to the infinite 
order at the boundaries. This shows that 

(7.5) 

:f is a homomorphism of the Weyl algebra. We will show 
how to construct :f in terms of Lie algebra theory. 

Let 3Y be the three-dimensional Lie algebra generated 
by three elements (p, q, 1) satisfying the following commuta­
tion relations: 

[p, q] = 1, 

[l,p] = 0 = [1, q]. 

3Y is called the Heisenberg Lie algebra. 

Let U (3Y ) be the universal associative enveloping alge­
bra associated with 3Y. Let J be the associative algebra 
ideal generated by elements of the form 

.:l - .:ll, 

.:lEU(3Y ). 

We will now show that the associative algebra 

U(3Y)lJ 

is isomorphic to the Weyl algebra r. 
Define a Lie algebra homomorphism of 3Y into 'If'" as 

follows: 

d 
p- dt' 

q---+multiplication by t, 

I---+multiplication by l. 

This representation, call it p:3Y ---+ r, extends as an associ­
ative algebra homomorphism to U (3Y ): 

The ideal f is mapped into zero, hence p passes to the quo­
tient to define an associative algebra homomorphism 

p:U(7t)lf ---+r. 
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It is now readily seen that p is an isomorphism. 
Now, for the Laplace transform, we have 

d 
2'(t) = - ds' 

2'( :t) =s. 

Define a Lie algebra isomorphism 

a:JY_JY 

as follows: 

a(q) = -p, 

a(p)=q, 

all) = 1. 

a extends to an associative algebra isomorphism 

a: U (JY )-U (JY). 

a maps f into f, hence defines an isomorphism 

'Jr _'Jr. 

(7.6) 

(7.7) 

It is obvious that this is just the map 2' defined by relation 
(7.4). 

8. MONODROMY PROPERTIES OF LINEAR ORDINARY 
DIFFERENTIAL EQUATIONS 

Now, we review certain classical material about the 
monodromy group of linear ordinary differential equa­
tions.2

•
21 Consider an inhomogeneous linear ordinary differ­

ential equation 

an (z)d;(y) + ... + aoy =/ 
Here, 

d = d 
z 

dz 

(8.1) 

The coefficients aO, ... ,an are polynomials in z. We can have 
this make sense atz = 00 also, by substituting u = Z-I, in the 
usual way. Let Zbe the "Riemann sphere," i.e., the complex 
plane with variable z, with z = 00 added on (conformally) in 
this way. We can solve (8.1) for y as an analytic function ofz 
in a neighborhood about any point in which an (z) fa, and 
analytically continue it throughout Z. Let Z' be Z with the 
singular points of (8.1), i.e., the points where an (z) = a omit­
ted. Let Z' be the simply connected covering space to Z '. Let 

¢>:Z'_Z' 

be the projection map. 1T is a principal fiber bundle with 
structure group 

i.e., the fundamental group of Z '. Construct Z in the follow­
ing way. Pick ZoE Z' arbitrarily. Let us then say that two 
curves which begin at Zo are equivalent is they satisfy the 
following relations: 

they have the same endpoint, 
they are homotopic, with endpoints fixed. 

Z' is then the quotient of the space of paths under this equiv­
alence relation. 1T I (Z ') is the quotient of the space of loops 
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based at zoo Path composition defines the action 

1T1(Z')XZ'_Z', 

which defines the principal fiber bundle action of 1T I (Z '). 
Now, Zo is a point chosen so that the homogeneous dif­

ferential equation 

and; + ... + ao = a (8.2) 

has n linearly independent solutions which are analytic in a 
neighborhood of Z00 Fix such a neighborhood and let Vbe the 
complex vector space of functions spanned by the solutions 
of (8.1). Since the difference of two solutions of (8.1) is a 
solution of(8.2), Vincludes the space of solutions of(8.2). It is 
equal to it if and only ifj fa. Hence, ifj fa, 

dim V= n + 1. 

One can start with a solution at Zo and analytically con­
tinue it along paths in Z '. The result is (by the monodromy 
principle offunction theory) independent of the homotopy 
class of the path. In particular, analytic continuation along 
closed loops defines a homomorphism 

1T1(Z')_GL(V), 

i.e., a linear representation of 1T I (Z '), which is called the mon­
odromy group of the differential equation (8.1). It is the basic 
object of study in the classical work on linear, ordinary dif­
ferential equations, e.g., by Fuchs, Schwarz, Poincare, 
Klein, Picard, and Vessiot. It also plays a basic role in the 
theory of automorphic/unctions. The monodromy group can 
also be defined as the holomony group of a connection on a 
vector bundle. 

Now, if/ fO, Vis an (n + I)-dimensional vector space. 
Let Vo be the n-dimensional linear subspace spanned by the 
solutions (in a neighborhood of zo) of the solutions of the 
homogeneous equation (8.2). 

Theorem 8.1: The monodromy group leaves Vo invar­
iant and acts as the identity in VIVo. 

Proof That it leaves Vo invariant just means that analy­
tical continuation of a solution of (8.2) along a closed loop 
returns to a solution of (8.2), which is obvious. The trivial 
action in V I Vo follows since analytical continuation of a so­
lutiony of(8.1) returns to another solutiony, andy - YI lies 
in Vo. Q.E.D. 

Let K be the kernel of the monodromy representation. 
It is an invariant subgroup of 1T I (Z '). Let S ' be the orbit space 
of K acting on K'. The quotient group 

1Tdz')lK 

acts on S '. The map 

¢>:Z'-Z' 

passes to the quotient to define a covering map 

¢>K: S'-Z'. 

One can similarly define the homogeneous monodromy 
group associated with the differential equation (8.2). It is an 
action of 1T 1(Z') on Vo. Let Ko be its kernel. There is a 
homomorphism 

1T I (Z ')1 K _1T I (Z ')I Ko, 

which defines the inhomogeneous monodromy group as an 

Robert Hermann 1286 



                                                                                                                                    

extension of the homogeneous one. This extension is central, 
i.e., its kernel is in the center. Thus, the inhomogeneous 
monodromy group is determined by the second group coho­
mology of the homogeneous one. 

9. MONODROMY CONDITIONS THAT A SOLUTION OF A 
WEYL EQUATION BE ALGEBRAIC 

A functiony defined in a region of the complex Z plane is 
said to be algebraic if it satisfies a relation of the form 

Pn (z)y(zr + ... + Po(z) = 0, for all ZE Z, (9.1) 

where the po, ... ,Pn are polynomials in z (in other words, if the 
field of functions containing y and the rational functions is 
an algebraic extension of the rationals). We will be concerned 
with conditions that specified differential equations have al­
gebraic solutions. Suppose that 

D(y)=f (9.2) 

is such an equation, where D is a Weyl operator. 
As in Sec. 8, we can study this question by choosing a 

nonsingular point ZO' letting Vbe the vector space of analytic 
functions in a neighborhood of Zo generated by the solutions 
to (9.2), and continuing along all loops in the Riemann 
sphere minus the singular points of(9.2). Here is the classical 
answer. 2 This work has recently been given a modern setting 
by Baldassari and Dwork. 22 

Theorem 9.1: An element yE V is an algebraic function if 
and only if the orbit of y under the monodromy group is 
finite. In particular, all elements of Vare algebraic functions 
if and only if the monodromy group is finite. 

Proof Suppose first thaty is algebraic over C[z), i.e., 
that it satisfies an algebraic relation of the form (9.1). Now, 
analytically continue y over curves in Z '. The coefficients 
po, ... ,Pn remain unchanged, buty transforms into the orbits 
of; y under the monodromy group. Hence, the elements in 
this orbit also satisfy such an algebraic relation. But, there 
are only a finite number of such functions, i.e., the orbit is 
finite. 

Conversely, suppose 

Y =YI,···,Yn 

are the orbits of y under the monodromy group. Let 

PI,···,Pn 

be the elementary symmetric function inYI, ... ,Yn in the func­
tion of z such that 

n n 

II (Yj(z) - A) = LPj(z)A j, (9.3) 
j=1 j=O 

for allAEiC. 

As this relation is analytically contained under the mono­
dromy group (with A held fixed) theYI> ... ,yn are permuted, 
i.e., the left-hand side remains invariant under the mono­
dromy group. Hence, they are meromorphic functions over 
the whole Riemann sphere, i.e., are rational functions on z. 
Now, substitute ,1,= Yt(z) to obtain a relation of the form 
(9.1). 

Remark: A word about the relevance of this to the the­
ory of Special Functions might be useful. Most of them sa-
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tisfy an equation of type (9.2). Some of them (e.g., the Bessel 
functions) have the property that their Laplace transform is 
an algebraicfunction.23 Similarly, certain of the solutions of 
the hypergeometric equation are algebraic, and the Laplace 
transform of a hypergeometric equation is another hyper­
geometric equation. 

10. THE GALOIS GROUP OF A PICARD-VESSIOT 
EXTENSION OF THE RATIONALS AND THE 
MONODROMY GROUP 

Let us return to the Titchmarsh differential algebra 
C (R +) with the rational subfield fft. Let t-f(t ) be an element 
of C (R +) which is a Picard-Vessiot element relative to the 
subalgebra fft. We can associate algebraic invariants withf 
(and afortiori the input-output systems associated withf) by 
using the notion of the Galois group2

,9, 10 of a differential 
field. 

Let JI be the quotient field of the integral domain ob­
tained from C (R +) by adjoining a unit element. The differen­
tial extends to JI, to define it as a differential field. 10 Sup­
poseJis an element ofC (R +), i.e., t-f(t) is a continuous map, 
satisfying the following conditions: 

(a)f lies in a Picard-Vessiot differential field JI(/) such 
that 

fftCJI(/)CJI, (10.1) 

(b)fis Laplace transformable, i.e., 

1"" I f(t)e - sl Idt < 00, for some sEC. (10.2) 

This Laplace transform sendsfinto a function 

s-2'(/)(s), 

which is analytic in a half-plane, and satisfies a linear ordi­
nary differential equation with polynomial coefficients. The 
Galois group of this differential equation is clearly the "ab­
stract" Galois of JI(/). 

The monodromy group of this differential equation is 
clearly contained in the Galois group.2 Since the Galois 
group is algebraic, it contains the algebraic closure of the 
monodromy. In certain cases (e.g., if the differential equa­
tion is Fuchsian) the algebraic closure of the monodromy 
group is the Galois group.2 It also follows on general alge­
braic principles that the finiteness of the Galois group of the 
differential field JI(/) over the rationals fft implies that 
JI(/) is an algebraic extension of JI(/). 

In the 19th century considerable work (e.g., by 
Schwarz, Klein, Fuchs, and Jordan) went into finding ex­
plicit conditions that the Galois group is finite. These results 
and generalizations are most readily accessible in recent 
work by Baldassarri and Dwork. 22 

11. REALIZATION THEORY t=OR INFINITELY 
DIFFERENTIABLE FUNCTIONS AND THE SPECIAL 
FUNCTIONS 

The Special Functions of mathematical physics have 
many quasialgebraic properties (linked, say, to differential 
algebra) that play an important role both in their applica-
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tions to applied problems and in the study of their general 
properties. The recursion relations are particularly impor­
tant, linking algebraically each whole family. Finally, the 
integral representations link the Special Functions to Lie 
group theory. In Ref. 24, a realization method was presented 
for functions t---+-/(t) onR + that were infinitely often differen­
tiable. I will review it here, then in several examples study its 
relation to recursion relations for the Special Functions. 

Let the state space X be the space of C "" , complex-val­
ued functions on the half-line 0.;;; 1" < 00. Denote a typical 
element of X by 

x:1"---+-x(1"). 

Let 

A:C "" [0, 00 )---+-C "" [0, 00) 

be the following linear operator: 

A(x)= dx . 
d1" 

(11.1) 

Let the input and output vector space be C, i.e., "scalar in­
put-output". Let B:C---+X, C:X ---+-C be defined as follows: 

B (u) = uf, for UEC, 

C (x) = x(O), for XE X =c 00 [0, 00). 

(11.2) 

( 11.3) 

The corresponding input-output system in state space form, 

dx 
- =Ax+Bu, 
dt 

y=Cx, 

(11.4) 

has the convolution solution (for zero initial condition) 

y(t) = i'c exp(t - r)Bu(r)dt. 

Now, with A given by (11.1), 

exp(tA )(x)(r) = x(t + r). 

(11.5) 

(11.6) 

Thus, using (11.2), (11.3), and (11.6), (11.5) takes the follow­
ing form: 

y(t) = fc [exp(t - 1")Bu(r)]dr 

= fc [exp(t - 1")U)u(r)]dr 

= i'C([exP(t - r)(/)] (r)u(r))dr 

= fr(t - 1")u(1")dr. (11. 7) 

Let us sum up as follows. 
Theorem 11.1: With the choice of data indicated above, 

the zero initial condition input-output relations correspond­
ing to the scalar input-output system (11.4) take the form 
(11.7), so that it is a causal convolution operator with the 
function/as kernel (Le., a mUltiplication in the Titchmarsh 
algebra). 

What seems to be done to make this a "realization" in 
the sense of Sec. 5 is to impose topologies correctly. This can 
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readily be done with the standard 16 locally vector space to­
pologies for C 00 functions. 

Of course, another state space realization is obtained by 
taking X to be the closure ofthe elementsf, Af, A 2f, ... in C 00 

[0, 00). This can be computed readily, and linked to many 
areas of classical analysis and mathematical physics, by 
choosing "/" to be one of the Special Functions. 

Example: 

Itt) =Jm(t), 

the mth order Bessel function, m an integer. 
The basic recursion relation we need is the following: 

(11.8) 

Also, 

J _nIt) = (- l}"1n(t). (11.9) 

Thus, relations (11.8) and (11.9) provide, for each n, A nu) 
=A nIB 1), 

d 
A= -, 

dt 

a relation of the following form: 

m+ 1 

A nu) = I aj~' ajE R. 

j=m - n 
j .. o 

(11.10) 

This realizes A as an infinite Jacobi matrix. How to use this 
to embed A in a Lie algebra of operators isomorphic to the 
group of rigid motion of R 2 has been described in work by 
Baras, Brockett, and Fuhrmann. 12-14 

However, a more geometrically natural way to embed it 
in a Lie algebra of operators is to use the integral representa­
tions of the Bessel functions to construct integral intertwin­
ing operators between this representation on functions and 
another. Let Coo (S I) be the Coo, complex-valued functions 
on the unit circle S 1 in R 2. These can be exhibited as the C 00 

functions 8---+-h (8 ) of the real variables 8 such that 

h (8 + 217') = h (0). 

Let 

ifJ:C ""(S I)---+-C oo(R+) 

be the following linear map: 

ifJ (h)(t) = i7TeilCOS8h (8) dO. 

Set 

a(h HO) = i cos O. 

Then, 

ifJ(a(h )J(t) = 17TeiICOS8(iCOS O)h (O)dO 

= !l... (7T e'l cos 8h (0 )d8 
drJo 

(11.11) 

(11.12) 

(differentiation under the integral sign justified by stan­
dard rules) 

= !l... (ifJ (h )(t )J, 
dt 

=ifJa=AifJ, 
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i.e., ¢ intertwines a and A. 
h is now one element of a Lie algebra of first order linear 

differential operators on C oo(S I), which is isomorphic to the 
Lie algebra of E(2), the group of rigid motions in R 2. 

a = i sin 0, 

d 
r= dO' 

{3 = i cos 0, 

(11.14) 

This Lie algebra and related ones acting on C oo(S I) [e.g., 
that ofSL (2, R )] has been extensively investigated in Ref. 25 
from the point of view of "deformation" of Lie group repre­
sentations. It is instructive to see how the other operators in 
the Lie algebra (11.14) behave relative to the intertwining 
operator ¢. Note that 

{32 = 1 - a 2
; 

hence, 

¢{3 = ¢((1 - a2)1/2) 

= (¢ -A 2¢ )1/2 

= (1 - A 2)1/2¢, 

¢(r(h ))(t) = (1Teitcos (J ~ (h (0 ))dO 
Jo dO 

= fTeitCOS(Jitcos ah (e)de 

= t lTTeitcos(Ja(h Hejde 

= t¢(a(h ))(0) 

= tA¢ (h )(e). 

Thus, we have 

¢r=BA¢, 

where 

(11.15) 

(11.16) 

(11.17) 

(11.18) 

B = multiplication by t. (11.19) 

B and A define the Lie algebra of the Heisenberg group 

[A,B] = 1. ( 11.20) 

We can now sum up as follows. 
Theorem 11.2: The scalar input-output realization of 

the Bessel functions leads to an embedding of A in the Lie 
algebra ofthe group of rigid motions of R 2, and realization of 
the Lie algebra in terms of an algebraic extension of the uni­
versal enveloping algebra of the Heisenberg Lie algebra, 
namely, 

A, (1 - A 2)1/2, (11.21) 

BA 

form the Lie algebra of E(2). B is just the differential of the 
Titchmarsh algebra constructed and utilized in previous 
sections. 

Remark: Such realizations of one Lie algebra in terms 
of an algebraic extension of another have appeared25,26 in 
relation to the theory of deformations of Lie algebras and 
their representations, particularly in terms of what one calls 
the Gell-Mannjormula. 
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12. REALIZATION THEORY IN TERMS OF THE 
LAPLACE TRANSFORM AND RIEMANN SURFACE 
THEORY 

In Sec. 11 we discussed various aspects of the realiza­
tion theory in case a given elementfofthe Titchmarsh alge­
bra satisfied a special condition, namely, it was infinitely 
often differentiable. Now we discuss the realization theory 
under another assumption, namely, 

f" le-sr(t)ldt< 00, forseR. 

Then, the Laplace transform 

.2"(f)(s) = looe~Sr(t )dt 

(12.1) 

(12.2) 

will exist as an analytic function of the complex s plane in 
some region of the complex s plane. It will be convenient to 
define the Laplace transform as a complex analytic one-dif­
ferential form 

UJ(f) = .2"(f)ds. (12.3) 

Thus, we have 

(12.4) 

This can be interpreted in the following integral-geometric 
way: 

e ~ Sr(t )dt 1\ ds (12.5) 

is a two-differential form on the manifold R + X C. UJ( f) is the 
form on C (or a region) that results from integrating this form 
over the fiber of the Cartesian projection map 

(t,s)--+s of R + X C-+IC. 

Once defined as an analytic one-differential form in 
some region of the complex s plane, UJ(f) can be analytically 
continued. We will make the following assumption about the 
conditions UJ(f) should satisfy: 

UJ(f) can be analytically continued to be a meromorphic 
form in a fixed neighborhood U about the point s = 00 
of the Riemann sphere. UJ( f) has at most a pole of order 
one at s = 00. (12.6) 

Now, set 

Z=S-I 

and let 
X = vector space of one-forms which are meromorphic 
in U with a pole only at s = 00, i.e., those which are of 
the form 

UJ = (a_Iz- 1 + ao + alz + ···)dz. (12.7) 

Then, 

a_I = res (UJ, s = 00), (12.8) 

the residue of the meromorphic form UJ at the point at 
infinity. 

To construct the system, proceed as follows. Set 
X' = vector space of one-forms UJ of type (12.7), i.e., 
that are meromorphic in U with a single pole of type 
(12.7)ats= 00; (12.9) 
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C (w) = residue of w at s = 00, i.e., the left-hand side of 
(12.7); (12.10) 
C is a linear map X'-c. 

Define a linear map 

B:C_X' 

as follows: 

B (c) = cw(f), for CEC, (12.11) 

where w(f) is the one-form which results from Laplace 
transforming! Finally, define a linear map 

A:X'_X' 

as follows: 

Set 

A (w) = sw - C (w)ds'. 

X = vector subspace of X' spanned by 

w(f), Aw(f), A 2w(f), .... 

(12.12) 

Now, form the scalar input-output system with state space 
X: 

dx 
- =Ax+Bu, 
dt 

y=Cx. (12.13) 

Now one can explain the relation between the input­
output system (12.2) and the one constructed in the "time 
domain" in Sec. 11. 

Theorem 12.1: With the notation explained above, sup­
pose that /EC "" [0, 00 ) is a function such that the Laplace 
transform of/and all its derivatives exists in the region U of 
the complex s plane. Then, the input-output relations of the 
system (12.13), with initial conditions x(O) = 0, are of the 
form 

y(t) = Lf(t - r)u(r)dr. 

w is related to the system as follows: 

w(f) = (C(s -A )-IB)ds. 

(12.14) 

(12.15) 

We can make this realization more explicit. With w of 
form (12.7) and z = s-I, we have 

w=(a_ls+ao+als-I ... l( - sI2 dS) 

- (a_ls- 1 + ao S-2 + a ls- 3 + ... )ds. 

Hence 

A (w) = sw + a_Ids 

= -(aos-l+als- 3 + ... )ds. (12.16) 

Notice that A is what functional analysts call the shift 
operator: 

(12.17) 

It is also closely related to the "annihilation" operators of 
quantum mechanics, and thus to the Heisenberg group. 
These formulas also appear in the functional analysis ap­
proach 12-14 to the realization problem. However, the advan­
tage of this interpretation of the formula is that it suggests 
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various "geometrizations." 
For example, one might postulate that the open set Ube 

identified with an open set of another Riemann surface (not 
necessarily the Riemann sphere constructed from the com­
plex variable s and the point at infinity) such that the differ­
ential forms w which lie in the state space of the realization 
can be extended to be meromorphic one-forms on M. For 
example,fof/(t) is one of the Bessel functions; its Laplace 
transform l9 is a meromorphic form on the Riemann surface 
M associated with the algebraic curves 

w2 =S2 + 1. (12.18) 

One can similarly go through the tables of the Laplace trans­
form of the Special Functions and reel off the associated 
Riemann surfaces. 

Thus, one who is familiar with the theory of Riemann 
surfaces II will suspect that the Riemann-Roch theorem will 
playa role in the study of systems associated with the ele­
ments of the Titchmarsh algebra which lie in Picard-Vessiot 
extensions of f!ll. As preparation for such a study in a later 
publication, I will now show that it does indeed playa role in 
the simplest case, where/belongs to f!ll itself, where the 
corresponding systems have finite dimensional state spaces. 

13. THE RIEMANN-ROCH THEOREM APPLIED TO 
FINITE DIMENSIONAL SYSTEMS 

The realizations constructed in Sec. 12 involve mero­
morphic differential forms on Riemann surfaces. The classi­
cal Riemann-Roch theorem II is the basic structural result 
about such geometric objects. 

I will now show how the case of a finite dimensional 
state space (where the symbol is a rational function) can be 
treated in this spirit. 

Theorem 13.1: Letft-/(t) be a C "" function of the real 
variable t that satisfies a linear, ordinary differential equa­
tion with constant coefficients. Then 

(a) The Laplace transform 

!/(f) = 1"" e - 51(t )dt 

exists and is a rational function of s, i.e., of the form 

!/(f) = ~:;~ , (13.1) 

where Nand D are polynomials such that 

Nand D have no factors in common. (13.2) 
(They are then said to be coprime.) 

(b) The realizations constructed in Secs. 11 and 12 in terms of 
functions of t and meromorphic one-forms, respectively, are 
isomorphic under Laplace transform. 

(c) The state spaceX for the realization constructed by means 
of the Laplace transform in Sec. 12 consists of all rational 
one-forms of the form 

w = PIs) ds 
D(s) , 

where s_P (s) is a polynomial on s such that 

degree P < degree D. 
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(d) The dimension of X, i.e., the Macmillan degree of the 
system, is equal to the degree of the polynomial D (s). 

Proof These facts are well-known properties of the La­
place transform. 19 

My goal now is to identify the state space X with one of 
the vector spaces that occur in the Riemann-Roch theorem. 
Let S be the compact Riemann surface obtained from adding 
the point at infinity to the complex plane with complex vari­
able s. 

Now, let us recall certain concepts from classical Rie­
mann surface theory. Let Sbe an arbitrary Riemann surface, 
i.e., a connected, one-dimensional complex manifold. Let F 
be a meromorphic function on S. At a point pE S, with ana­
lytic coordinate z valid in a neighborhood of p with z( p) = 0, 
F is said to be of order n at p if 

where F' is analytic about p, F'(p):;60. 
We then define 

p(F,p) = n. (13.5) 

With p held fixed, the map p __ p(F, p) is a valuation of the 
field of meromorphic functions. 

Similarly, if w is a one-form which is meromorphic in a 
neighborhood of p, and w = F dz, define 

p(w, pI = p(F, pI· 

Now, let us return to the case where S is a Riemann 
surface of genus zero, its complex numbers parametrized by 
"s", with the point at infinity added on. Let w be meromor­
phic one-form such that 

w( p, 00» - 1. (13.6) 

If w is of the form 

= (NID)ds (13.7) 

with coprime polynomials N, D, then (13.6) says that w is 
either analytic at 00 or has a simple pole. Since the one-form 
ds has a pole of order two at 00, 

ds = - s2d (S-I). 

N 1 D must vanish to at least the first order, with 

degree N < degree D. (13.8) 

Thus, 

T(s) = N ID (13.9) 

is the transfer function of a finite-dimensional linear system. 
Theorem 13.2: Let X be the set of meromorphic one­

forms which satisfy the following conditions: 

p(w', 00» - 1, 

p(w', p»p(w, p) 

(13.10) 

(13.llf 

for all pE S. Then, X consists of all one-forms of the form 

w'(P ID) ds, 

where P is a polynomial such that 

degree P,;;;, degree D. 

Proof Suppose 

w' = Fds, 
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(13.12) 

(13.13) 

with F a rational function. Condition (13.7) implies that DF 
has no pole at finite r, i.e., is a polynomial P. Condition 
(13.10) implies that this polynomial is of order < P. Q.E.D. 

Let S continue as the compact Riemann surface of ge­
nus zero. Let w = Tds = (N ID) ds be a meromorphic one­
form on S such that degree N < degree D. Then, 

v(w, 00» - 1. 

We assume familiarity with the classical Riemann­
Roch theorem as described by Weyl.lI Let SI""'Sm be the 
poles of w at finite points of S. Let fJ be the following divisor: 

fJ = (oo)-I(sdYiw,S')'"(sm),,iw,smi. (13.14) 

Then, fJ agrees with the divisor of w at finite points, but may 
not agree at infinity. We tie it down at 00. Let X (fJ) be the 
meromorphic differential one-forms which are "multiples" 
of fJ, in the sense that 

v(w, p»fJ(p) (13.15) 

at all pE S. [Thus, a divisor is a mapping of S--(integers), 
which is equal to zero for all but a finite number of p's. The 
classical notation (13.14) for fJ indicates the points, in this 
casep = 00, sl, ... ,sm' at which fJ is nonzero.] 

or 

Let 

fJ - I is the divisor defined as follows: 

fJ-l(p) = -fJ(p), forallpES, 

(13.16) 

X(fJ- l ) = set of merom orphic functions/such that 
v(F,p);;;.t5- I (p) for allpES. 

General Rlemann-Roch formula 

dim(X)(fJ- l
) - dim(X(fJ)) = (degreefJ) + 1- (genus S). 

(13.17) 

[Degree fJ = sum of fJ (p), pE S.] 
Formula (13.17) holds for an arbitrary divisor fJ on an 

arbitrary, compact Riemann surface S. If we take fJ as de­
fined by (13.13), notice that fJ -I is "positive," in the sense 
that fJ - I( p);;;.O for all pE S. 

Thus, 

X(fJ- l ) = 0, 

since any meromorphic function which has no poles is a con­
stant. The condition t5 -iI 00) = 1 forces this constant to be 
zero. Also, degree fJ = - degree D - I, genus S = O. Then, 
the Riemann-Roch formula takes the special form 

dimX(fJ) = degreeD. (13.18) 

We can sum up as follows. 
Theorem 13.3: Let E be the complex line-bundle on the 

PI(e) whose dimension is the degree of D. Then, the state 
space of the scalar input-output system whose transfer func­
tion is T (s) = N (s)1 D (s) is the space r (E) of holomorphic 
cross sections of E. The dimension of this realization, i.e., the 
minimal dimension of the state space, is thus "naturally" 
computed using the Riemann-Roch formula. 
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14. EMBEDDING OF THE "DYNAMIC" OPERATOR OF 
THE STANDARD TIME-DOMAIN STATE-SPACE 
REALIZATION IN A LIE ALGEBRA VIA THE PICARD­
VESSIOT -INFELD-HULL FACTORIZATION 

Recall that we have defined a state-space realization of 
a (scalar input-output) linear system 

y(t) = LJ(t - r),u(r) dr (14.1) 

as a system of linear differential equations of the form 

dx 
- = Ax + Bu, (14.2) 
dt 

such that the solution of (14.2) with initial conditions 
x(O) = 0 is given by the integral operator (14.1). 

Now, A is a linear operator X-X on the state vector 
space. It is of obvious interest from the Lie theory-Special 
Functions point of view2

,24 to know when A can be embed­
ded in a larger Lie algebra f§ of operators in the vector space 
X which acts irreducibly. One might also require certain con­
ditions relating f§ , B, and C, which I will not attempt to 
formulate here. 

In previous work24 I have followed up suggestions by 
Infeld and Hull27 relating Special Functions as solutions of 
second order, ordinary linear differential equations and fac­
torizations of these operators into first order operators. The 
Lie algebra generated by these first order operators seems to 
be important in the study of the mathematical structure of 
these special functions. I will now investigate, in a prelimi­
nary way, how the Infeld-Hull structure affects the standard 
time-domain realizations constructed in Sec. 11. 

In Sec. 11 we have chosen the state space X to be a space 
of Coo functions on the interval O.;;;t < 00. Now we choose it 
more algebraically as a subspace of a Picard-Vessiot differ­
ential field extension of the field of rational functions of the 
complex variable t. 

Let 

C[t] 

be the integral domain of polynomials in the variable t. (We 
now use standard notation of algebra.) 

Let C(t ) be the quotient field, i.e., the field of rational 
functions. 

Let 

d, :C(t )-C(t) 

be the usual derivative operator. It defines 

(C(t), d,) 

as a differential field. 9
-

10 C[t] is, of course, a subdifferential 
algebra. 

Let 

D:C(t )-C(t) 

be a linear differential operator with coefficients in C(t ), i.e., 
D is of the form 

(14.3) 

with an, ... ,aoEC(t). 
Let 9 (D) be the Picard-Vessiot extension of C(t ) ob-
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tained by adjoining to C(t ) all the solutions of 

D(f)=O. (14.4) 

Thus, ::JjJ (D) is the smallest differential field containing C(t ) 
and all solutions of (14.4). [More classically, 9(D) can be 
realized as a space of locally analytic functions defined on 
certain regions of the complex t plane.] 

Now, let 

X = set of allJE9 (D) such thatJis analytic in a neigh­
borhood of t = O. 

(14.5) 

X is then a differential subalgebra of P;; (D). Let U and Y be 
the complex numbers considered as input and output 
spaces. As in Sec. 11, let 

C:X_Y, 

C (f) = J(O), for JE X, 

A: X-X, 

(14.6) 

A=d,. (14.7) 

Choosing oneJE X defines a system of the form (14.5), with 

B(u)=uf, foruEU-C. (14.8) 

Thus, we obtain an input-output system of the form (14.5). 
Now, the operator D factors into a product offirst order 

operators in 9(D). Of course, finding such a factorization 
explicitly enables one to solve D = 0 by integrations, so it is 
in practice rarely possible to find them. However, there may 
be subdifferential fields Y of P (D) such that D takes some 
simple form in Y. Here is one such possibility. 

Definition: The subdifferential field Y of 9 (D) is said 
to be an InJeld-Hull extension oJ(c(z), D) if there are first 
order differential operators 

and a zeroth order operator Do, with coefficients in Y, such 
that 

(14.9) 

The Lie algebra !t' of operators on Y generated by the oper­
ators Do, D],. .. ,Dn is called the Lie algebra associated with 
the InJeld-HullJactorization (14.9). 

In the paper by Infeld and Hulf7 and in Vilenkin's trea­
tise3 one finds many examples of such factorizations. Some 
of the associated Lie algebras can be readily calculated. They 
seem to be infinite-dimensional Lie algebras of a relatively 
simple algebraic structure. 

The operator which defines the "dynamics" of the sys­
tern A is now realized as a differential operator, in factjustd,. 
Thus, given a UE X such that 

Du=O, (14.10) 

we can associate with it the input-output system (14.6)­
(14.8), and the Lie algebra of differential operators generated 
by A and !t'(D). In certain favorable cases, A will in fact 
belong to !t'(D). 

Let us now compute certain examples. 
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Example 1: The harmonic oscillator 

D=d; - 12 +A, 

AEiC. 

Set 

DI =d, +1, 

D2 =d, - t, 

DID2 = (d, + t)(d, - t), 

= d; + td, - d, t - 1 2 

=d;-t 2-1. 

Hence, 

with 

D=D1D2 + Do, 

Do = 1 +A, 

[D 1,D2] = - 1 

= - (1 +A )-IDo, 

A = ~(DI - D2)' 

(14.11) 

(14.12) 

(14.13) 

(14.14) 

(14.15) 

(14.16) 

These formulas describe the situation . .?(D) is the Heisen­
berg group, and the dynamic operator A belongs to it. 

Of course, the linear subspace of X generated by u, Au, 
A 2U, ••• , which determines the minimal (or controllable) real­
ization, and is calculable by the familiar annihilation--cre­
at ion operator formalism associated with the harmonic os­
cillators in quantum mechanics. 

Example 2: The Bessel equation. 
Suppose 

DI = (d, + nl -I), 

D2 = de - (n - l)t -I (n is a complex number), 
(14.17) 

D 1D2=d;+t- 1d, _n2t- 2 (14.18) 

-the Bessel operator. 

The Lie algebra.? generated by DI and D2 is computed in 
Ref. 28. It is an infinite-dimensional, but graded, Lie algebra 
which is in some sense an infinite-dimensional generaliza­
tion of the Heisenberg algebra. It can be expressed28 in terms 
of the universal enveloping algebra of the Lie algebra :5 of 
the group G of rigid motions of the two-dimensional Euclid­
ean plane, which is a three-dimensional solvable Lie group. 
As explained in Ref. 28, the element A of.? is identified with 
an element of :5 , in which is the underlying value (in terms of 
this formalism) for the appearance of the Bessel functions as 
matrix elements3 of representations of G. 

In Refs. 3 and 28, the Legendre and Whittaker func­
tions are treated in parallel with these two examples. The 
only qualitative difference is that the field :T in which the 
second order operator D factors in the "Infeld-Hull" form is 
a quadratic extension ofthe rational field C(t ), whereas in the 
two simpler examples treated above it is C(t) itself. 

These examples suggest the introduction of some 
further concepts, which we now briefly present in prepara­
tion for further research. 
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15. WEYL AND SCHLESINGER SYSTEMS 

Return to the case where the kernelJofthe input-out­
put relations is an element of the Titchmarsh algebra, where 
the latter is extended to include all Lebesgue measurable 
functions 

f[O, 00 )-+C, 

which are locally integrable with respect to Lebesgue mea­
sure. Such functions determine distributions, in the sense of 
Schwartz, in the usual way. Let us say that the input-output 
relation 

u-+ Lf(t - r)u(r)dr 

are of Weyl type iff, as a distribution, satisfies a linear, ordi­
nary differential equation with polynomial coefficients. Let 
us say that it forces a Schlesinger system if the distribution 
satisfies a linear, ordinary differential equation whose coeffi­
cients belong to a field of algebraic functions in the complex 
variable t ofjinite genus. 

The further study of these systems, and their relations 
with Lie groups, will appear in later publications. 
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New similarity solutions for the Ernst equations with electromagnetic fields 
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A new class of exact similarity solutions is found for the Ernst equations with electromagnetic 
fields. The original coupled nonlinear partial differential equations are reduced to a system of 
coupled nonlinear ordinary differential equations. The reduced system is solvable in a manner 
identical to previous similarity solutions found by Kaliappan and Lakshmanan. These solutions 
may be considered the extension of the Curzon solution (static, uncharged) to the stationary, 
charged solution. 

P ACS numbers: 02.30.Jr 

I. INTRODUCTION 

Similarity variables are often used to reduce partial dif­
ferential equations in two independent variables to ordinary 
differential equations. The similarity form can be found sys­
tematically using either the differential geometric techni­
ques of Harrison and Estabrook I or the classical techniques 
of BIuman and Cole.2 

Recently, similarity variables have been employed to 
find new exact solutions of the Einstein and Einstein-Max­
well equations. Fischer3 found two different similarity forms 
for the Ernst equation 

(Re E)V2E = VE,VE, (1) 

where E is a single complex function depending only on the 
cylindrical variables p and Z and V2 is the axisymmetric La­
placian. The two similarity forms 

E=E(p/Z) (2a) 

(2b) 

both reduce (1) to ordinary differential equations which are 
solvable in terms of elementary functions and quadratures. 
More recently, Kaliappan and Lakshmanan4 (referred to 
hereafter as K and L) used the similarity variable p/z in (2a) 
to find exact solutions to the Ernst form of the coupled Ein­
stein-Maxwell equations: 

(55 * + YJYJ* - l)V2s = 2V 5'(5 *V 5 + YJ*VYJ), (3a) 

(55 * + YJYJ* - l)V2YJ = 2VYJ·(s *Vs + YJ*VYJ), (3b) 

where 5 and YJ are complex functions related to the complex 
Ernst function E and the complex Maxwell function tf! for 
the electromagnetic field by 

E = (5 - 1)1(5 + 1), tf! = YJ/(S + 1). (4) 

It is the purpose of this paper to show that the system (3) 
is exactly solvable in terms of the similarity variable of (2b), 

(5) 

Remarkably, these solutions have the same functional form 
as those found by K and L, differing only in the similarity 
variable used. They may be considered as the extension of 
the Curzon solution5 to a more general physical situation. 

a) Present Address: Bell Laboratories, Whippany, New Jersey 07981. 

2. SIMILARITY FORM 

For future convenience, we use the similarity variable 

r = 1n[( 1 + S 2) 1/2 - S) 
= In[(1 + (p2 + Z2)2)1/2 _ (p2 + Z2)] (6a) 

or 

s = - sinh r. (6b) 

The solution procedure is analogous to that of K and L. 
Equation (3) reduces to a set of coupled ordinary differential 
equations: 

(55 * + YJYJ* - 1)(4rS" + 65 ') = 8r(s *5 ,2 + YJ*s 'YJ'), (7a) 

(55 * + YJYJ* - 1 )(4r7J" + 6YJ') = 8r(s *5 'YJ' + YJ*YJ'2), (7b) 

where the prime denotes differentiation with respect to r. We 
now let 

5 = K exp [ if Tdr] , 

n = p exp [J qdr] , 

(8a) 

(8b) 

where K, T,p and q are real functions of r. Substituting (8) into 
(7) and equating real and imaginary parts results in four cou­
pled ordinary differential equations: 

(K2 + p2 _ 1)[4r(K" - Kr) + 6K') 

= 8r[p(K'p' - KTpq) + K(K'2 - K2r)), 

(K2 + p2 _ 1)[4r(p" _ pq2) + 6p') 

= 8r[K(K'p' _ KTpq) + p( p'2 _ p2q2)), 

(K2 _ p2 _ 1)[4r(2K'T + K7') + 6KT) 

= 8r[K(2KK'T) + p(KTp' + K'pq)), 

(K2 + p2 _ 1)[4r(2p'q + pq') + 6pq) 

(9a) 

(9b) 

(9c) 

= 8r[p(2pp'q) + K(KTp' + K'pq)). (9d) 

Multiplying (9c) by K and (9d) by p and adding yields 

d (K2T + p2q) + 2. dr = 2(2KK' + 2pp') (10) 
K2T + p2q 2 r K2 + p2 - 1 ' 

which integrates to 

K2T + p2q = Cr- 3/2(K2 + p2 _ 1)2, (11) 

where C is a constant of integration. 
Similarly, (9C)XK - (9d)Xp yields 
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(12) 

which integrates to 

K2r _ p2q = r-3/2[C(K2 _ p2) + D](K2 + p2 _ 1), (13) 

where D is a second integration constant. From (11) and (13) 
we obtain 

r = (l/2K2)r-3/2(K2 + p2 - 1)[C(2K2 - 1) + D], (14a) 

q = (l/2p2)r-3/2(K2 + p2 _ 1)[C(2p2 - 1) - D], (14b) 

which are identical in form to K and L equations (16) and (17) 
except for the additional factor of r- 3

/
2

. 

Using (14), (9a) may be rewritten as 

(K2 + p2 _ 1)(4rK" + 6K') - 8r(pp'K' + KK'2) 

= r- 2(K2 + p2 - 1)3K-3C 2[ (1 - ~r -4K4] , (15) 

which may be rewritten as 

r12K' d [ r/2K' ] 
(K2 + p2 _ 1) dr (K2 + p2 - 1) 

= _~(C_D)2.:{K-2_C2.:{K2. 
8 dr dr 2 

(16) 

Equation (16) may be integrated to obtain 

1 ( r12K' )2 [ K-
2 

C 2K2] - = -_(C-D)2 __ -+E , 
2 K2 + p2 - 1 8 2 

(17) 

where E is the third integration constant. 
Analogously, (9b) may be integrated to 

1 ( r/2p' )2 [ p-2(C + D f C 2p2 ] 
- = - ---+F ,(18) 
2 K2 + p2 - 1 8 2 

where F is the fourth integration constant. Equations (16) 
and (17) are identical to K and L equations (21) and (22), 
again with the exception of the factor of r12. 

At this point, K and L solve their equations (21) and (22) 
for (K2 + p2 - 1) and equate; the same can be done for Eqs. 
(17) and (18) here, as follows. Rewrite (17) as 

'2![(C- D f C
2
K2 ] K + -- - E = - 2r-3(K2 + p2 _1)2, 

8K2 2 
(19a) 

(19b) 
Equating the left-hand sides of(19a) and (19b) and making 
the change of variable 

(20) 
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yields K and L equation (24). Thus, the functional forms for 
K and p here and in K and L are identical and their results 
may now be used directly. The equation resulting from the 
procedure described above may be integrated to obtainy as a 
function of x with a fifth constant G [K and L (25a)], and 
substituted into (17) to obtain a first order equation for x, 
which may be solved to finally obtain K as 

K=[(X,t 2+x2)/(t 2+1)]I/2, (21) 

where 

t = - a + A coth(A vr + ~ In B ) (22) 

and x I' x 2, v, a, and A are new constants that are combina­
tions of the constants C - G given by K and L equations (27) 
and (30). 

Finally, to obtain the Ernst potentials 5 and 1], the 
expression exp[iJrdr] is required. To find this, use (14a) and 
the fact that 

(x+y-l) = 
dt r1/2 

dr C(t 2+1)' 
(23) 

so that the factor of r- 3 /2 in (14a) cancels with the factor of 
r1/2 in (23) to give the same expression as (K and L) for Jrdr, 
and 

exp [iJrdr] = exp i arctan [ (rx; - JX;)t ] elH
, (24) 

(rx; + rx;}t 2 

where the integration constant H could be identified with a 
NUT parameter. A second NUT parameter is produced by 
the term exp iJqdr. 

Thus, amazingly, the functional expressions for 5 and 1] 

here are identical with those found in K and L, the difference 
in the solutions being the different similarity variables. 
These new solutions, like those of K and L, contain eight 
constants and are finite everywhere, therefore representing 
the external gravitational and electromagnetic fields of an 
axisymmetric, stationary, charged, rotating body. Further­
more, the similarity variable p2 + Z2 is the same as that found 
in the Curzon solution,5 and these new solutions may be 
thought of as the extension of the Curzon solution (static, 
uncharged) to the more general situation. 

IB. K. Harrison and F. B. Estabrook, J. Math. Phys. 12,653 (1971). 
2G. W. Bluman and J. D. Cole, Similarity Methods/or Differential Equa­
tions (Springer, New York, 1974). 

3E. Fischer, J. Phys. A 13, L81 (1980). 
4p. Kaliappan and M. Lakshmanan, J. Math. Phys. 22, 2447 (1981). 
5H. E. J. Curzon, Proc. London Math. Soc. 23, (1924). 
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Quantization as a consequence of the symmetry group: An approach to 
geometric quantization 

Victor Aldaya and Jose A. de Azcarraga 
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A method is proposed to obtain the dynamics of a system which only makes use of the group law. 
It incorporates many features ofthe traditional geometric quantization program as well as the 
possibility of obtaining the classical dynamics: The classical or quantum character of the theory is 
related to the choice of the group, avoiding thus the need of quantizing preexisting classical 
systems and providing a group connection between the quantum and classical systems, i.e., the 
classical limit. The method is applied to the free-particle dynamics and the harmonic oscillator. 

PACS numbers: 02.40. + m, 02.20. + b, 03.65. - w 

I. INTRODUCTION 

In a previous paperl we have briefly outlined a method 
of quantization which follows closely the traditional method 
of geometric quantization of So uri au, Kostant, and oth­
ers.2-4 The underlying rationale, however, is rather different: 
Instead of searching for quantizations of previously defined 
classical systems, the new approach tends to build directly, 
and without any ingredient other than a group law, the dyna­
mical quantum systems. Thus, their quantum character is 
already determined by the symmetry group. The method is 
based on the close relation which exists among the spatial 
and dynamical properties of a system and its symmetry 
group, as well as of the slightly different character which the 
symmetry groups of classical and quantum systems present. 
Clearly, the difficulty of the procedure is the determination 
of the group for the case of interacting systems; in this re­
spect, it fares no better than the conventional Kostant-Sour­
iau (KS) theory. Nevertheless, our method may be applied 
directly in configuration space, thus avoiding the problem of 
characterizing the manifold of solutions5 of the classical sys­
tem in order to quantize it. 

From a general point of view, our procedure is similar 
to that followed in classical mechanics when building dyna­
mical systems associated with a Lie group. There, the sym­
plectic manifolds appear contained in the group coalgebra, 
where the group operates in a natural way. In the present 
case, the manifold sought is a contact manifold which ap­
pears as a submanifold of a Lie group G (of trivial cohomo­
logy). G will be obtained as a central extension of a Lie group 
G-the classical group in the usual meaning of the word-by 
a one-dimensional Lie group T = U( 1), and the contact form 
will be defined by the (vertical) component along Tof the 
canonical I-form defined on G. The space-time variables 
need not to be initially known; the group structure itself will 
determine the corresponding identification. 

This method of quantization also provides a way of de­
fining the classical limit ofthe quantum theory. The classical 
limit-in its Hamilton-Jacobi version-is recuperated using 
T = R instead of T = U( 1) in the general theory, i.e., opening 
the compact group U( 1). In this way, the classical limit does 
not involve a limiting procedure, but is associated to a differ­
ent in variance group. 

To facilitate the comparison with the Kostant-Souriau 
theory, a short summary of results is given in Sec. II. Section 
III is devoted to the development of the above-mentioned 
program, and in Secs. IV and VI two applications are pre­
sented, the case of the free particle and that of the harmonic 
oscillator; the classical limit is described in Sec. V. Finally, 
some comments about the extension of the theory to the 
relativistic case are made in Sec. VII. 

II. THE FORMALISM OF GEOMETRIC QUANTIZATION 
OF SOURIAU AND KOSTANT: AN OUTLINE 

In this paragraph we review briefly the formalism of 
geometric quantization of Souriau and Kostane-4 in the 
form which is more useful for our purposes (see also Ref. 6). 
The first part (till Definition 2.7) deals with the formalism of 
prequantization. The rest will give a brief resume of the 
quantization procedure which still might be completed with 
the introduction of the bundle of half-forms, which allow the 
definition of an integration volume for the polarized mani­
folds. Proofs will be omitted, the reader being referred to the 
quoted literature and specially to Refs. 2 and 3. 

Definition 2.1: A quantum manifold P is a (2n + I)-di­
mensional differentiable manifold such that 

(QM a) There exists on P a I-form e such that the pair 
( p,e ) defines a contact structure, Le., the (contact) form is of 
constant class 2n + 1, 

dim(rad€Jnradde) = o. (2.Ia) 

(QM b) The group U(I) acts on P effectively, i.e., 

Zp5 = s~z = 1 'rJ sEl> [zEU(I)] (2.Ib) 

and the dynamical vector field associated with e is the vec­
tor field E p , which generates the action ofU(I) on P. 

In fact, since e is a contact form f(QM aJ] it follows that 
there is a unique vector field X such that 

(2.2) 

(QM b) then asserts that X =E p. E p thus plays the role of the 
Hamiltonian vector field for P and the quotient 
(P IEp=='S, de = w) is then a symplectic manifold. 

An alternative way of defining Pis established by means 
of the following 
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Proposition 2.1: A quantum manifold is a principal bun-
1T 

dIe (P-S, U( 1)) and a connection form eEA I( P) such that 

the curvature 2-form n = curve defines on S ~P I U (1) a 
symplectic structure. 

Definition 2.2: Let (p,e) and (P ',e ') be two quantum 
manifolds, and let F:P_P , be a diffeomorphism. F is called a 
quantomorphism if 

F*e' = e, (2.3a) 

F(zps) = zpF(s) VZEU(I), VSE P. (2.3b) 

As a function, Fis thus a U(I) function [(2.3b)] so that the 
diagram 

in which/is the associated symplectomorphism, is commu­
tative. When S = S' and/ = Is, the quantizations are said to 
be equivalent. 

An alternative way of defining F is given by the 
following: 

Proposition 2.2: A quantomorphism is an isomorphism 
1T 

between the principal bundles (P-S, U(I);e) and 
1T' 

( P' ---+ S', U( 1 );e ') (compatible with the connections e, e '). 

Theorem 2.1 (on the existence of a quantization): Let 
(S,lU) be a symplectic manifold. Then, for a quantization 
( p,e) of (S,lU) to exist, it is necessary and sufficient that lU be 
of integer cohomology class, [lU] E ImE, where E is the ca­
nonical map E:H2(S,l)_H2(S,R).7 

The possible quantizations of S are classified according 
to the following: 

Proposition 2.3: The set of inequivalent quantizations of 
a quantizable manifold (S,lU) are parametrized by the group 
H I(S, U (1)) or, equivalently, by the number of different char­
acters (or of irreducible unitary representations) of the first 
homotopy group 1TI(S) of S. 

1T 

Definition 2.3: Let ( P - s,e ) be a quantum manifold, 

and Fa quantomorphism over the base S. An infinitesimal 
quantomorphism Xis a vector field onP,XE2¥'( P), such that 

Lxe = O. (2.4) 

This expression is the infinitesimal counterpart of F *e = e 
[cf. (2.3a)], X being the vector field associated with F. 

Proposition 2.4: The necessary and sufficient condition 
for X to be an infinitesimal quantomorphism is the existence 
of a real function/ on S,JE.Y(S), such that 

ixe = f, ix de = - df (2.5) 

Indeed, to prove this proposition, it is sufficient to realize 
that ixe =/ defines a function on S, for which it is suffi­
cient to check that 

• (2.6) 

Theorem 2.2 (definition of quantum lifting): Given a 
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globally Hamiltonian vector field X on S, there is a unique 
vector field X on P, 1T-projectable on X, such that X is an 
infinitesimal quantomorphism. 

Proof since X is globally Hamiltonian, there exists a 
function/EY(S) such that iXlU = - df The theorem now 
follows from Proposition 2.4 • 

We shall denote henceforth by X I the infinitesimal 
quantomorphism determined by f A useful expression for 
X I is provided by 

XI =XI + [/ - e(XI)]E"p, (2.7) 

where ixflU = - d /; for/ = const, XI = (const)·B p. Using 
local coordinates I qi, Pi J for S, I qi,p i ,z J for P, we have 

.0 d' dz d /\d i - . J ~ = Pi q' + -:-' lU = Pi q,,:: p = lZ-
lZ Jz 

(2.8) 

and 

- . J/ J J/ J ( J/) _ 
XI = JPi Jqi - Jqi J Pi + / - Pi JPi '::P' (2.9) 

Theorem 2.3: The mapping/-XI is a Lie algebra iso­
morphism in the sense that 

[X,,Xg] = - XI j,gl ' (2.lO) 

where the Poisson bracket is defined by 

If, J = -lU(X,x )=L f=(J/ Jg _ J/ Jg), 
,g I g X. Jqi JPi J Pi Jqi 

1T 

Definition 2.4: Let ( P ---+ s,e ) be a quantum manifold. 

The space 0/ wave/unctions JY'( P ) is the space of the complex 
U( 1) functions on P, i.e., 

1jJ: P-C/IIJ(zpS) = z{: 1jJ(S) 

VSEP, VZEU(I). (2.11) 

From the expression of B [(2.8)] and the definition (2.11) it 
follows immediately that 

(2.12) 

where the dot means derivation. 
Definition 2.5: Given a function/E.Y(S), the operator 

which acts linearly on JY'( P) as defined by 

(2.13) 

may be called the prequantized operator associated with the 
magnitudef The definition of the usual quantum operator 
requires a polarization; see Definitions 2.7 and 2.9. 

Taking advantage of the canonical Liouville measure 
which exists on any simplectic manifold and of the fact that, 
because of(2.11), 1jJ*(S)IP (S) is defined onS, a Hermitian sca­
lar product may be defined on JY'( P) by means of the 
following 

Definition 2.6: Given 1jJ,IPEY'i"( P), the scalar product is 
given by 

Theorem 2.4: The quantization map/-fsatisfies: 

(a)fis a Hermitian operator; 

(2.14) 

(b) ~ is a regular linear map of the space .Y(S) of real 
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functions onS on the space of Hermitian operators on Jf'( P); 
(c) i = 1IwIP); 
(d) Lf,g] = iO J,g J)~ 
The above ends what is usually called prequantization. 

To obtain an irreducible representation of the Lie algebra of 
quantum operators (p = - iJIJq) and q = q, for instance) 
and thus complete the quantization procedure, the notion of 
polarization is introduced according to the following 
definition: 7r 

Definition 2.7: Let ( P ~ S,g ) be a quantum manifold. 
A (closed) submanifold QC P on which g is zero, g I Q = 0, 
is called (Souriau) a Planck manifold. The pair (Q,i), where i 
is the injection of Q into P (i*g -g I Q)' is thus a (nongeneral) 
integral manifold of the Pfaff form g. 

Taking into account that g (E' p) = I =I- 0, the following 
is clear: 

Proposition 2.5: The restriction 1TIQ of 1T to Q is a local 
diffeomorphism. 

When 1T1 Q is a global diffeomorphism, 1T(Q )=N is a sub­
manifold of S diffeomorphic to Q on which UJ is zero, 
UJ I N = O. Hence, N is an isotropic 
[UJ(X,x') = 0 V X,x'ET(N)]submanifoldofS.ltisfrequent 
to define a polarization as an isotropic differential system on 
S; since the system is integrable, this is equivalent to giving a 
foliation by the Planck (integral) manifolds. 

Once N has been defined, the (horizontal) vector fields 
of f¥(N) may be lifted to f¥( P) by means of the connection 
g. 

Dejjnition 2.8: Given XEf¥(N)C f¥(S), these exists a 
uniqueXE( P), the isotropic lifting, such that g (X) = o (hori­
zontality) and 1TT oX = X 0 1T. Explicitly, X is given by 

(2.15) 

The fields X constitute an integrable differential system (they 
close into an algebra) which reproduces the Planck manifold 
QCP. 

The reduction of the algebra of the prequantized opera­
tors (quantization) is now achieved by imposing on the 
1/;EJf'( P) the so-called Planck condition: 

Definition 2.9: The polarized Hilbert space Jf' Q ( P) is 
given by the 1/;EJf'( P) such that 

(2.16) 

When the Planck manifold is a maximal isotropic manifold, 
(2.16) may be rewritten in the form [Xf = X

f 
- fizJIJz] 

11'11 = J;"" j = 1, ... ,!(dimS), (2.17) 

where iXljUJ = - dJ; and XfjEf¥(N); physically l}j J corre­

sponds to a maximal set of commuting observables. 
Note: The Planck constant fz=h /21T has been put equal 

to I throughout, but it is simple to include it explicitly in the 
corresponding formulae. In that case, g = jJidqi + fJPz1iz, 
E' = (i/fzJz,.J IJz, E.", = (i~fz)j [(2.8),(2.12)];1 = - ifzX I 
[(2.13)]; [J,g] = ifzO J,gJ), XI =XI - (lIfz)jizJIJz, and so 
on. 

III. QUANTIZATION AND SYMMETRY: A GROUP 
THEORETICAL APPROACH 

In the symmetry group approach to geometric quanti-
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zation, two group entities playa special role: the canonical 1-
form on a Lie group and the symplectic cohomology of a Lie 
group. We briefly review here the relevant concepts. 

A. Canonical 1·form on a Lie group 

Let G be a Lie group and :1 its associated Lie algebra, 
considered as the tangent space Te(G) at the unity eEG. Let 
Lg (Rg) be the left (right) translations, Lg :s~gs (Rg :s~sg). 
XEf¥(G) is called a left (right I-invariant vector field if 
L JoxoL g- I = X, i.e., if L JXs = Xgs (R JOXoR g- I = X, i.e., 
R JXs = Xsg) Vg,sEG. Calling f¥L(G) (f¥R(G)) the vector 
space of the left (right)-invariant vector fields X ~ (X ~), the 
above is symbolically written (Lg ). X ~ = X ~ 
((Rg).X~ = X~).1t is simple to see that 
f¥L(G)::::: f¥R (G)::::: Te(G) and that [X~,x~] = O. 

The canonical left (right) I-form () L.R on G 8 is the leit 
(right)-invariant :1-valued I-form uniquely determined by 
the condition () L.R (Z ~,R) = Z) (V Z ~,REf¥L,R (G). If I Zi J is 
a basis of :1 , then 

(3.1) 

where I () ~R iii J is the dual basis for the ordinary (i.e., R­
valued) left (right)-invariant I-form on G, i.e., such that 
(Lg)*()~lil = ()~Ii,ls ((Rg)*()~lil = ()~lil,), and 
() ~,R IiI(Z ~'~l) = Dj, This last expression, 

()~,R(iI(Z~':)=Dj, (3.2) 

will be often used in Sec. IV. 
For the case of () L, one finds that the canonical left­

invariant I-form transforms as ad(g-I) under right transla­
tions Rg and has zero Lie derivative with respect to right­
invariant vector fields, Lx~() L = O. Thus, the left-invariant 

() L iii are left-translated in a way which preserves the notion 
of incidence on left-invariant vector fields, and are kept in­
variant in the customary "physical" meaning (zero Lie deri­
vative) under right-invariant vector fields. Analogous con­
siderations can be made for () R through substituting right for 
left. 

B. Symplectic cohomology on a Lie group2 

Let Gbe a Lie group andg~g:7'.=D.'1.(g) the (coad­
joint) representation on the coalgebra :1 * of G. 

A symplectic cocyc/e of G is a :1 *-valued cocycle r such 
that its derivative D (r)(e) at the unity eEG is antisymmetric, 
i.e" r is a differentiable mapping r:G-:1 * such that9 

r(g'g)=r(g')+g;".r(g) V g',gEG, (3.3a) 

whereg;y. is the representation ofg on :1*, and D(r)(e) Z 
satisfies 10 

[D (r)(e).Z ](Z ')=n (Z ',Z) = - n (Z ',Z) 

V Z,Z 'E:1. (3.3b) 

Two l-cocycles r,r' are cohomologous if their differ­
ence is a coboundary, 

..:11'0 :g.-g ;§·Jlo - Jlo, (3.4) 

where JloE:1 *. Equation (3.4) is an equivalence relation 
between symplectic cocycles which defines the (vector) space 
of symplectic cohomology Hs(G,:1 *) ofG. Hs(G,:1*) is clear-
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ly a vector subspace of H (G, [1 *), the cohomology space of 
the coadjoint representation. Two cohomologous symplec­
tic l-cocycles y and y' define two cohomologous nand n '; 
indeed, from y'(g) = y(g) + ..11'0 (g), one gets 

n' = n + ,uo.ad, n '(Z,Z') = n (Z,Z ') + ,uo.[Z,Z ']. (3.5) 

C. Symplectic cohomology and central extensions: 
H<tG,U(1» 

From the definition of n as a mapping n: [1 ---+[1 *, it 
may be derived that 

n([Z,Z']) - z: .. n(Z') - z;~.n(Z) = 0, (3.6) 

where Z.y* indicates the (coadjoint) representation of [1 on 
[1 *." Equation (3.6) written as an (Z,Z') = 0 indicates that 
n may be identified with a 1- [1 * -cocycle of the Lie algebra 
[1 valued on the [1 -module [1 * ([1 acts on [1 * through 
Z.>.) in accordance with the standard definition '2 of coho­
mology in Lie algebras. It is interesting now to relate 
H,(G,[1*) and the group H2(G,V(I)) [or H~(G,IR)], which 
characterizes the possible central extensions of G by V( 1) (or 
1R.'3,'4 A two-cocycle S (g',g) of G (called an exponent of G 
since in the case of V( 1) it appears as such) is a function 
t:G X G---+IR which satisfies 

S(g"g2) + S(g,g2,g3) = s(g"gzg3) + S(g2,g3)' 

S (e,e) = O. (3.7a) 

A 2-coboundary (a trivial exponent) is a 2-cocycle of the form 

where ;:G---+IR satisfies; (e) = 0; Eqs, (3,7) determine 
H6(G,V(I)). 

(3.7b) 

Taking now a canonical coordinate system (G may al­
ways be supposed simply connected by going to the covering 
group) or making use of the formal group structure, '5 we 
may represent by the same letter the corresponding elements 
of G and [1. Then, the 2-cocycle in H ~ ([1 ,IR) associated with 
(3.7a) may be written 

.I (g"g2) = lim (lit 2)[S (tg"tgz) + s ([tg,] -', [tg2] -I) 
/-~o 

+ S ( [tg, ] [tg 2] , [tg, ] - , [tg 2] - ')] 

= -.I (g2,gd, (3.8a) 

and is called the infinitesimal exponent. '6 The.I associated 
with a coboundary is determined '4 by the real-valued linear 
function A on [1, 

A(g)= lim (l!t);(tg), .I (g"g2) =A ([g"g2])' (3.8b) 
/-.Q 

Because of the linearity of A , the trivial.I (g"g2) in (3.8b) may 
be written as,uO.[g"g2]' Then, co homologous infinitesimal 
exponents.I' and.I are related by 

.I '(g"g2) =.I (g"g2) + ,uO·[g"g2] (3.8c) 

[compare with (3.5)). There is thus a one-to-one correspon­
dence between the classes of cohomologous symplectic 1-
cocycles of G, of [1 *-I-cocycles of [1 , of real valued 2-forms 
n on [1 X [1 and of real valued 2-cocycles of [1: 
Hs(G, [1 *);::;Hs ([1 ,[1 *) ;::;H~([1 ,IR). Since G is simply con­
nected, Hs(G,[1*);::;H~(G,IR);::;H~(G,V(I)). 
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D. Two examples 

Let E be a vector space of dimension 2n considered as 
an additive group, X /I = X' + X. The central extensions of E 
by V( 1) are characterized by H ~ (E, V( 1)), i.e., by the different 
symplectic forms which may be defined on E. The possible 
extensions E(m) are given by the group law 

(~'}(J = C.~;(ut';)/2). (3.9) 

The symplectic forms m are given by ms (X' ,x) or 
mn (X ',x )-m.I (X',x ),mEIR + (thefactthatheres = .Iisac­
cidental, and is not true in general). The group defined by 
(3.9) is called the Weyl-Heisenberg group. 

The extensions of E by IR are similarly obtained by sub­
stituting 8' + 8 + !mn (X' ,X) for the lower line of (3.9). 

E. Definition of a quantum manifold 

Let a be a Lie group of trivial symplectic cohomology 
obtained as a central extension of a group G (of nontrivial 
symplectic cohomology) by a Lie group T of dimension one 
[Twill be taken as V( 1); the case of IR will be relevant for the 
classical limit of the theory and will be discussed in Sec. V). 
a (T,a IT = G) is a principal bundle over the base G. 

Let 8 L be the canonical left I-form on a and 8; its 
vertical component as defined by the bundle projection 
1T:a---+G. The characteristic module of 8;, 
'iJ (} I. rad8 ;nradd8; defines an integrable differential sys­

temVon a (this is immediately seen by using the identity 
i[x.y 1= Lxiy - ixLy). 

Proposition 3.1: Given a as before, the quotient 
P = a 1'iJ (} ~ together with 8; 1'iJ (} ~ as connection form has 

the structure of a quantum manifold. 
Proof Because 8; is the vertical component of 8 and E 

the generator of T, we have iE 8; = 1 since 8 L is the canoni­
cal form on a. From the properties of the canonical form we 
obtain L 8 L (0) = _ CO 8 L (Jl and in particular (since X L xl" IJ (0) 

is central), Lx L 8 L
(0) = - Cg j 8 LIJ1, i.e., L E8; = O. From 

~ -
this expression we get i Ed8; = O. Thus, G 1'iJ (}; will be a 

quantum manifold (Definition 2.1) if 8y satisfies the addi­
tional condition of being of class 2s + 1 on a since then it will 
define a contact structure on the quotient a 1'iJ (};' 8; will be 

of class 2s + 1 if 8; ;\ (d8 ;rr"O and (d8 L )2s+ , = O. The last 
condition is obtained by noticing that on a canonical chart 
d8y may be identified with dy, interpreting y as an ordinary 
I-form on G. The rank of d8y is thus equal to the dimension 
2s of one of the symplectic orbits of G on [1 * defined by y, 
which is even.2 The condition 8; ;\ (d8 ;)':;60 now follows 
from (d8;)s:;60 and 8;(E):;60, EErad(d8y ) •• 

Definition 3.1: The vector fields belonging to the quo­
tient of &pR (a) by 'iJ (}L are called (pre) quantum operators. 

Definition 3.2: A ;olarization is a subspace of ,7("L (a) 
containing 'iJ e; which on the base of the quantum manifold 

P generates an isotropic submanifold for the sympletic form 

d(8;1'iJ e;)' 

Definition 3.3: The space of the wavefunctions is the 
space of all the T-equivariant functions defined on P. 

As we shall see, the above simple definitions-all based 
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on the group of the system-are directed towards recovering 
the more traditional formalism of geometric quantization, 
where P is a contact manifold. Nevertheless, since both the 
quantum operators and the polarizations appear here as 
derivations canonically defined on a, the proposed quanti­
zation process may be directly realized on the group a itself 
despite the fact that a may not to be a manifold of dimension 
2n + 1.17 This will be illustrated in Sees. IV and VI. 

It will become apparent from the examples that not 
only the vertical component () ~ and () L will have a physical 
meaning but that the other components will reproduce, on 
the trajectories of Crff 8;' the Newton equations of motion. 

IV. THE FREE QUANTUM NON RELATIVISTIC PARTICLE 

In this case a is aim), the central extension of the Gali­
lean group by T=V(l); the parameter m (the mass) charac­
terizing the group extension 14 is an element of H 2( G, V( 1 )) [or 
Hs(G,~*)]. The group law of aim) is obtained from that ofG, 
g" =g'*g, 

B" =B' +B, BER, 

A" = A' + A + V'B, A,VER3
, (4.1) 

V" =V' + V, 

and is given by g" = f*g, where g==(g,;-) and 

(4.2) 

The rotations have been omitted in (4.1) and (4.2) for the sake 
of simplicity. In any case, for spin zero there is no contribu­
tion from SV(2,C) since this group is semisimple and has 
trivial cohomology. 

Let us take in (4.2) the cocycle 

Slm) (g',g) = m[A'·V + B(V'·V + !V'2)]. (4.3) 

The right-invariant vector fields (X R = ag" lag' Ig· ~ e) are 
given by 

R a xR a V-X B =-, A=-+m =, 
aB aA 

X~ =B~ + ~+mVBE, 
aA av 

X~ E=i;-~, a;-

(4.4R) 

and the left-invariant vector fields (X L = ag" I agl g ~ e) are 
given by 

X L - ~ V~ I V2;:;-
B - + + 2m -, 

aB aA 

X A
L = ~ XLV = ~+mAE, 

aA' av (4.4L) 

XL=;:;-=i;-~· ;-- a;-' 
it is immediately verified that (XL,xR] = 0. The canonical 
left I-form on aim» () L = () ~(i)oXli» is now easily computed 
from (3.2), with the result 

(}LIBJ=dB, eL1AJ=dA-VdB, 

e L1V) = dV, (4.5a) 
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(}LI;)=(}~=eL = _ mAdV - ~mV2dB + ~g; (4.5b) 

and again one may check that the defining properties (Sec. 
IlIA) 

L (}L-O L . (}LlJl = -Ci (}Llk) xR -, x L (,) I k 

V i,j = B,A,V,;-. (4.6) 

[which correspond to (R g )*() L = ad(g-I)(} Land 
(Lg )*() L = () L] are fulfilled. We shall simply denote 
e L = e in what follows. 

The characteristic module Crff e is determined by the 
fields satisfying ixe = 0, ixde = 0. This characterizes 
uniquely a differential system composed by one vector field, 

a V a v2 - XL X=-+ -+!m == B. 
aB aA 

(4.7) 

Its integral manifold is determined by the equations (of 
motion) 

dB = 1, dA = V, dV = 0, d;- = !mV2(i;-), (4.8) 
ds ds ds ds 

where s is the integration parameter and is given by 

B =s, A = Vs + K, V = Vo=Plm, ;- = zeiIP
'12m)s, 

(4.9) 

where K, Yo, and z are the integration constants (and the one 
corresponding to B has been set equal to zero). Equations 
(4.9) suggest the identifications 

B=t, A=x (4.10) 

which, together with V = v p/m define the evolution 
space variables in terms of the group parameters. 18 The 
manifold of solutions is obtained by means of the change of 
variables (the generalized "Hamilton-Jacobi" 
transformation): 

p = P, x = !. t + K, ;- = zeiIP'12m)" (4.11) 
m 

where K ("center of mass"), P (momentum), and z are the 
integration constants of the equations of motion which para­
metrize the quantum manifold P = a ICrff e (Proposition 
3.1). In terms of the variables x, t, and p, e is written 

p2 d;-e = - xdp - -dt + -. (4.12) 
2m It 

Passing e to the quotient P, (4.12) takes the form 

e p = - KdP + dzliz (4.13) 

in terms of the integration constants K, P, and z; clearly, 
(p,ep ) is a contact manifold. 

The prequantum operators associated with K, Pare giv­
en(Definition3.1)by -(i/m)X~, -iX~ definedonP (in 
fact, K = (ilm)X ~, p = - iX ~, but the difference of sign 
may be incorporated into the definition of the fields). From 
(4.4R) and (4.10), (4.11), we obtain, for the vector fields on P, 

X R a p. a A= -+ IZ-, 
aK az 

X~=m~. ap (4.14) 

Thus, the operators act on the wave functions (Definition 
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3.3) through the expressions 19 

'" ( a ) '" aif! Pif!= -i- +P if!, Kif!=i-
aK ap' 

(4.15) 

where the T-equivariance property (2.12) has been used. It is 
easy to check that (4.15) are the same expressions one would 
have obtained from (2.13) and (2.9) by taking (K,P) as coordi­
nates for Sand! = P,K. 

The reduction of the representation is achieved by tak­
ing a polarization. Using the one defined by the left (Defini­
tion 3.2) vector fields X ~ and Xi, 

Xi=~, 
aK 

(4.16) 

the condition (2.16),X~.if! = 0, gives if!#if!(K) and thus (4.15) 
reads 

(4.17) 

(4.16) is also the polarization which is obtained from (2.15) by 
putting X = J I JK. 

These polarization conditions may be imposed directly 
on the evolution space (on Glm)), without resorting to the 
manifold of solutions S or to the quotient P. In the same way, 
the quantum operators can be defined directly on the evohl­
tion space; thus the whole quantization process can be per­
formed directly on Glm). To do this, we start with (:-valued 
functions on Glm) , if! = if!(x,p,t,s ). The condition ofU( 1) func­
tion for if!, S.if! = iif! implies that if! is of the form 

if! = s<1> (x,p,t). (4.18) 

The polarizations are now given directly by the left vector 
fields (4.4L). Xi'if! = 0 now reads 

Jif! -;h = 0, if! = S<p( p,t ); (4.19) 

ip( p,t ) is the momentum space wavefunction. In this scheme, 
the condition X ~.if! = 0 imposed by the vector field of the 
time displacements of (4.4L) takes its full meaning: 

X~'if! = 0 -+ i aip = Lip, I/; = s F(p)e- il p'/2m)t. (4.20) 
at 2m 

Equation (4.20) is the Schrodinger equation which selects the 
functions which are physical wavefunctions. It appears here 
as one more polarization (condition) on if! compatible with 

X~. 
The quantum operators are similarly obtained from 

(4.4R), and one gets 

A. • R A 

P - - IX A -+ Pip(p,t ) = Pip( p,t ), (4.21a) 

K= ~ X ~ -+ Kip( p,t ) = (i ~ - .!. t )<p(P,t ) 
m Jp m 

(4.21b) 

after factorization of the terms in S. Equation (4.21b) allows 
the identifications of i with ia lap, since K = x - (pi m It. 

A final comment on polarizations may be in order here. 
The "transverse" polarization X ~, which also reduces the 
quantum representation, is not compatible with the Hamil­
tonian vector field ( [ X B,xV ] = X A) and thus does not lead 

1302 J. Math. Phys., Vol. 23, No.7, July 1982 

to solutions of the Schrodinger equation. From the physical 
point of view, this means that the quantization theory based 
on the quantum group G already dictates the appropriate 
polarization by specifying the dependence of the Hamilton­
ian function on x and p (here, H = !mV2). 

Different cocycles S (g' ,g) differing in a coboundary, on 
the other hand, may be used to define the same quantum 
group G, the central extension of G by U( 1) [as is clear from 
the group extension theory; see (3.7)]' Clearly, the theory 
must be insensitive to the choice of a particular cocycle (with 
the same m), and this is indeed the case, although intermedi­
ate expressions may vary. We collect here some useful equi­
valent cocyc1es and the corresponding left and right canoni­
cal forms (J ~,R on Glm), starting with the cocycle used in the 
text [Formulae (4.22) give, in this order, Slm) (g',g), 
eR,ande L

] 

m [A'V + B (VV' + 21V'2)]; _ mVdA + dt. 
it ' 

_ mAdV _ m V2dB + ds (4.22a) 
2 is' 

m [V.A' _ AV' + VV'B]; 
2 

_ m [VdA-AdV] + ds. 
2 is' 

_ m [AdV _ VdA] _ m V 2dB + ds (4.22b) 
2 2 is' 

- m[lBV'2 + V'A]' mAdV + dS. 
2 , i; , 

mVdA - ImV2dB + dt (4.22c) 
2 it ' 

m[A'V - B '(!V2 + VV')]; 

- mVdA + d (~mV2B) + ~ff; 

_ mAdV + mBVdV + ds. is (4.22d) 

V. THE CLASSICAL LIMIT 

Let us now take T = JR, the additive group of real 
numbers, and let us now call Glm ) the central extension of the 
Galilei group by lR. The group law for Glm) is given by (4.1) 
and 

(g" ,(J ") = (g' *g, a' + a + Slm) (g' ,g)), (5.1) 

which determines the composition law for arbitrary ele­
ments (g,a )EGlml (gEG, (JEJR) and replaces (4.2). 

The procedure ofSecs. III and IV may be followed now 
to determine a manifold P' which is a local chart (a vector 
bundle neighborhood) of the previously found manifold. The 
JR functions I/;(K,p,a) satisfy now the condition 

-./, 1 - a =-'1-'= ,.= -, aa 
(5.2) 

so that, if!(K,P ,a) = <1> (K,P) + (J. The po\arizationX i .if! = 0 
gives <1> = <1> (P), and for the operators P and K one finds 

p.w = P, K'I/; = aif!. 
JP 

(5.3) 
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Again, the results may be directly obtained in configuration 
space, where t/J = t/J(x,p,t,e). The constraints on t/J imposed 
by E, Xi = a lax [(4.4L)] require that $ = $ (p,t), and now 
X~.t/J = 0 gives 

a$ + L = a$ + H = O. (5.4) 
at 2m at 

Identifying $ with the Hamilton-Jacobi function S the 
theory obtained is thus the classicallimit20 of the quantum 
theory defined by Glm). Its group-theoretical interpretation 
is clear: the classical (Hamilton-Jacobi) theory is defined by 
Glm) obtained from Glm) substituting lR for U(l). Physically, 
one could say that the opening of the compact U( I) to lR 

(taking a local chart) eliminates the quantum prescription 
and gives the associated classical theory. 

As for operators in configuration space, they are ob­
tained from (4.4R) with E given by (5.2); 

A R a a 
P=X A = - +p-, 

ax ae 
A R a a a 
K-X v =t- +m- +tp-, 

ax ap ae (5.5) 

and the acting on t/J reproduce (5.3). 

VI. THE QUANTUM HARMONIC OSCILLATOR 

We consider now the nontrivial example of the quan­
tum oscillator. We shall not assume, as in the case of the free 
particle, anything about the space, time, or forces; all these 
quantities will be naturally defined by the quantum group 
once it is properly determined. 

Let Glm•w ) be the group defined by the following compo­
sition law (g" = f*g): 

A. " = A. ' + A., A. =WBElR, 

C" = C'e~ iA + C, CEC3
, C+ = (C)*, 

(6.1) I 

C"+ = C'+eiA + C+, 

This group is the central extension by U( I) of a group Glw) 

which contracts to the Galilei group21 G when the frequency 
w of the oscillator tends to zero (the rotations of G are again 
ignored). Indeed, the change of variables defined by 

C=(mlw)1I2(wA + JV)lv2, 

(6.2) 

where w 2m is the Hooke constant of the spring, allows us to 
rewrite (6.1) in the form 

B" =B' +B, 

A" = A' CoSlU B + A + (V'lm) sinw B, 

V" = V' COSlU B + V - wA' sinw B, 

t" = t 't exp! i!m[A'V COSlU B - V'A COSlU B 

+ (VV' / w + wA' A) sinw B]. 

(6.3) 

In the zero force limit w-o, the first three equations of (6.3) 
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reproduce (4.1), and the last one gives 

t" = t 't exp[ i~m[(VA' - V' A) + VV'B] J, (6.4) 

i.e., the group law of Glm) where Slm) (g',g) is given in terms of 
the (Bargmann) cocycle (4.22b). 

We now proceed with the quantization procedure 
which again will be based on the left canonical form. As 
mentioned before, this means that the left- and right-invar­
iant vector fields define polarizations and operators, respec­
tively. The left vector fields are given by 

X a ·C a 'C+ a 
A = aA. - 1 ac + 1 ac+' 

Xc= ~ - ~it~ 
ac 2 at' 

(6.5L) 

X a i C'r a 
c+ = -- + - I~-, 

ac+ 2 at 

X; =it~, 
at 

and the right ones by 

X _ a 
A - aA.' 

x - ~ iA a + i ~ iAC +'1' a 
c - e ac 2: e I~ a( 

(6.5R) 

X iA a i iAC'r a c+ =e -- - -e l~-
ac+ 2 a( 

X; =it~. 
at 

The canonical left I-form on Glm•w ) is given by 

e LI(;)=@= l..... (C+dC - CdC+) _ CC+dA. + dt 
2 ~' 

(6.6a) 

eLIc) = dC + iCdA., (6.6b) 

eLIC +) = dC+ - iC+dA., 

eLlA) = dA., 

and it may be seen that LxRe L = O. 

(6.6c) 

(6.6d) 

The characteristic module CtJ e is determined by the 
vector field 

X= ~ -iC~ +iC+~' 
aA. ac ac+' 

the equations of motion are given by 

dC 
ds 

'C dC+ ·C+ -I -- =1 
'ds ' 

dA. = I dt = 0 
ds 'ds ' 

(6.7) 

(6.8a) 

(6.8b) 

and thus the trajectories determined by the generator (6.7) of 
CtJ e are 

c = Coe~ is, C + = C o+eis, B = s, t = to==Z. (6.9) 

[Again, one finds that (6.8a) may be derived from the other 
components (6.6b) and (6.6c) of e.] 
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On P=Glm.wl/'tff e, the form 0 reduces to 

0 p = ~ (Co+ dCo - CodCo+) + ~z 
2 u 

(6.10) 

in terms of the constants of the motion Co, Co+ , and z, as it 
should. Nevertheless, we shall continue to work on the 
group Glm.w ) to take advantage of keeping the time depen­
dence as given by the identification 

(6.11) 

To determine the wavefunctions, we adopt as polarization 
the one generated by the subgroup X ~,x t [(6.5L)]. The 
Planck condition, together with the condition of the U( 1) 
function for the t/! defined on Glm.,u) , t/! = t/!(C,C+ ,A,t), give 

E.t/! = it/! =? t/! = t$ (C,C+ ,,.{ ), 

L at/! C+ 
XC·t/!=O=?- + -t/!=O 

ac 2 
=? t/! = tip(C+ ,A )e ~ CC' 12, (6.12) 

XL.t/! = 0 =? aip = _ iC+ aip . 
,\ a"{ ac+ 

This last equation I which in the definition of the group cor­
responds to the evolution of t/! [(6.11); cf. (4.20)] J is nothing 
but the evolution equation in the Bargmann-Fock-Segal 
picture22 from which the usual description of the quantum 
harmonic oscillator may be recovered. 23 In particular, when 
the scalar product (Definition 2.6) is applied to the polarized 
functions, 

t/! = tip(C+ ,A )e ~ C'C/2, 

it takes the Bargmann form 

(6.13) 

<t/!',t/!)= ( d3C+ip'*(C+,A)ip(C+,A)e~lq', (6.14) 
JR" 

which corresponds to a scalar product for holomorphic 
functions ip with weightp = exp( _ ICl 2

). 

We now proceed to identify physically all the group 
parameters and describe the full contents of the canonical 
form on Glm .w )' In terms of the parameters of Glml , the fields 
in (6.5R) and (6.5L) are written24 as 

1304 

X B
R = ~ 

aB' 

X R B a . B a A = coSU) - - W SIllW -
aA av 

+ m [wA sinw B + V coSU) B ]B, 
2 

X R sinwB a B a 
Y = ----- + coSU) -

w aA av 

m [v sinw B A B ] -+ -- --- - coSU) ~, 
2 w 

X R 'j- a -
r;=l!>-=~ 

at 
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(6.15R) 

and 

X L _ ~ _ m V=-
A - -, 

aA 2 
(6.15L) 

XyL = ~ + m AB 
av 2 ' 

Despite the similarity of notation ~ith the Glm ) case, the 
above vector fields correspond to Glm.wl ; the two situations 
are distinguished by commutators such as 
[XB' X A ] = W

2Xy. This commutator--we note in pass­
ing--explains why the polarization defined by X i is now 
unsuitable as a polarization for the harmonic oscillator and 
another one had to be introduced, leading naturally to the 
Bargmann-Fock-Segal picture. 

To compare with the free case, we now return to the left 
canonical form on Glm .w ) which is given by [cf. (4.5a) and 
(4.22b)] 

e LIB ) = dB, eLIAI = dA - VdB, eLIY
) = dV + w2AdB, 

(6.16a) 

eLI"=0 = m [VdA - AdV] 
2 

- (~mV2 + !mw2A2)dB + ~t. 
The vector field of C(J e is given by 

a a 2A a -Xl. X=-+V--w -= B 
aB aA av 

(6.16b) 

(6.17) 

and the corresponding equations dB Ids = 1, dAlds = V, 
dV I ds = - w2 A and dt Ids = 0 again dictate the 
identifications 

B=t, A=x, mV=p, and F= -w2mx. (6.18) 

The group thus includes the dynamics; in fact, eLlA) = 0 
defines the velocity, and e L lui = 0 is Newton's law. As for 
o L, it identifies the Hamiltonian p2/2m + ~mw2x2 as the 
factor accompanying dB. We give now, for completeness, 
the action of Glwl on the evolution space variables x,p,t: 

V. 
x' = x + A coSU)t + -- SIllWt, 

W 

pi = P _ mwA sinwt + mV coSU)t, 

t ' = t +B. 

(6.19) 

These transformations leave invariant, as they should, the 
oscillator equation d 2xI dt 2 = - mw2x and, for w-+O, be­
come the familiar Galilei group transformations. 

VII. CONCLUDING REMARKS 

All developments in this paper, being based on the Gali­
lei group, are obviously nonrelativistic. The problem of ex-
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tending the formalism to the relativistic situation appears 
already in the free case because the Poincare group does not 
admit nontrivial extensions by U(I) (nor by other unitary 
groups) as a consequence of its trivial symplectic cohomo­
logy. Indeed, it is not specially illustrative to enlarge an in­
variance by means of a direct product. 25 Even the require­
ment of strict invariance of the (initially) classical theory 
(applied to the Lagrangian or to the Poincare-Cartan form 
by imposing zero derivative) does not provide a reason to 
generalize the (classical) relativistic theory since the Poin­
care group already admits strict invariance. Besides these 
difficulties in the use of U( 1) ® g; as a quantum group, one 
might add that the elementary quantizing relations, 
[ Xi, P j] = i{j~, are not compatible with the Poincare group 
since, as is well known, the operator x above does not belong 
to algebra of g;. This constitutes the root of the difficulty of 
defining a relativistic position operator (Ref. 27; see also 28). 
Indeed, the above shortcomings merely reflect the fact that 
the axiomatization of the quantization process of a relativis­
tic theory trails behind that of its nonrelativistic (and hence 
only approximate) counterpart. A way out to this situation, 
which is still based on the Poincare group, would be to look 
for infinite-dimensional extensions containing both g; and 
U(I) (and bypassing in this way the no go theorems). This 
would lead in a natural way to relativistic quantum field 
theory, whose quantization process may be considered as 
based on that of an infinity of oscillators. Another possibility 
would be to consider supersymmetric extensions. This line of 
research seems worth pursuing, and work is in progress in 
this direction. 

Finally, we conclude by mentioning that possibility ex­
ists of using, in the general theory (Sec. III, esp. HIE), a 
group T larger than U( 1). 
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We provide necessary and sufficient conditions for several observables to have ajoint distribution. 
When applied to the bivalent observables of a quantum correlation experiment, we show that 
these conditions are equivalent to the Bell inequalities, and also to the existence of deterministic 
hidden variables. We connect the no-hidden-variables theorem of Kochen and Specker to these 
conditions for joint distributions. We conclude with a new theorem linking joint distributions and 
commuting observables, and show how violations of the Bell inequalities correspond to violations 
of commutativity, as in the theorem. 

PACS numbers: 02.50. - r, 03.65.Bz 

1. INTRODUCTION 

The question of when joint probabilities exist in quan­
tum mechanics is not entirely settled, although several re­
sults in the literature suggest that joint probabilities exist 
only for commuting observables. 1 We show here that the 
special question of whether observables can have a joint dis­
tribution in a given, fixed state lies at the center of recent 
investigations into hidden variables; in particular, it is the 
key to the Bell theorems2 and the no-hidden-variables result 
of Kochen and Specker.3 We conclude with a new theorem 
linking joint distributions and commuting observables. 

2. STATISTICAL OBSERVABLES 

In this section we establish a framework, and results on 
joint probabilities, to be applied below to quantum mechan­
ics. We begin by defining a statistical observable (or, observa­
ble, for short) as a pair (A, PA ), where A is a real-valued 
function and PAis a probability measure on the Borel subsets 
ofthe reals (R). Intuitively, PA (S) gives the probability that A 
takes a value in S. Thus every random variable paired with 
its distribution function is a statistical observable. In quan­
tum mechanics every self-adjoint operator A gives rise to 
statisticalobservables (A, P '::), where A maps a sequence of 
unit rays ("states") <Pn to a real number A iff 
InfllA<pn - A<pn II = 0, and where P '::(S) = (Xs(A ) '1" for 
Xs, the characteristic function of the set Sand IJI any state 
(i.e., unit ray). It is convenient to refer to the function A 
alone, in the pair (A, PA ), as the (statistical) observable, sup­
pressing reference to the measure PA . Using this convention, 
we define ajoint distribution of statistical observables A I' 
A 2, ... ,An as a probability measure PA". An on the Borel sub­
sets of Rn returning each measure associated with each ob­
servable as marginals; i.e., satisfying 

PA, . .A;.,AJRX .. ,xS X .. ,XR) =PA,(S), 

where Borel set S occurs in the [1h place in the Cartesian 
product. It is trivial to show that observables always have a 
joint distribution, since the product measure 

PA" .... An = PA, "'PAn 
always suffices. If, however, one is given a set of observables 

with certain fixed joint distributions already defined for var­
ious tuples of observables in the set, then it is a nontrivial 
question whether there exists a joint distribution for all the 
observables that returns the fixed joints as marginals. If so, 
we shall say that there is ajoint distribution compatible with 
the fixed joints. We now establish some results of this sort, 
having in mind an application to quantum correlation ex­
periments. (Intuitively, below, think of the fixed joints as the 
ones quantum mechanics gives-in some state-for pairs of 
commuting observables.) 

Theorem 1: Let observablesA I , A 2, ... , An; B I , ... ,Bm be 
given together with joint distributions PA B for i = 1, 2, ... , n 

" } 

andj = 1,2, , .. , m. There exists a joint distribution for all 
n + m observables compatible with the given joints if and 
only if there exists a joint distribution P B" ... , Bm and corre­
sponding joint distributions PA" B", Bm' each of which is 
compatible with P B"., Bm and PA,. B} for i = 1, 2, ... , nand 
j = 1,2, .,o, m. 

Proof Clearly, if there is a joint distribution for all the 
n + m observables, compatible with the joints for the AB 
pairs, then the stated conditions hold. To establish the con­
verse, notice that these conditions enable one to define den­
sity functions Pi = dPA ,. B, .... Bm on Rm + I and a density 

f3 = dPB " .. ., Bm on Rm such that for y = (YI' .. ·,Ym)' 
fRPi(X i, y)dxi =f3(y) for i = 1, ... , n. Then for 
x = (XI' ... , xn) we can define a probability density P on 
Rn + m by 

(1 ) 

(For f3 = 0, we can set the left-hand side to zero as well.) This 
is a proper density, for 

S Rn + mp(x,y)dxdy = S R m/3 (y)dy = 1. 

Moreover, we get the given distributions PA"B, .. B
m 

back as 
marginals because 

SRn_lp(x,y)dxI ... dxi_ldxi+ I···dxn =Pi(Xi,y)· 

for i = 1,2, ... , n. Finally, since each Pi returns 
PAAU = 1, ... , m) as marginals, the probability measure on 
the Borel subsets of Rn + m corresponding to the density P is 
the required joint distribution. To apply the theorem it is 

1306 J. Math. Phys. 23(7). July 1982 0022-2488/82/071306-05$02.50 © 1982 American Institute of Physics 1306 



                                                                                                                                    

useful to state an immediate corollary. 
Corollary: Necessary and sufficient for the existence of 

ajoint distribution for observables A" ... , An; B" Bz, compa­
tible with givenjointsPAi.Bp <)<k < n andj = 1,2), is the ex­
istence of a joint distribution PB,.B, and of distributions 
P ,each of the latter compatible with PB,.B, and with 

A/tBl.B"! 

the given P AA' 

The corollary enables one to reduce the general prob­
lem to conditions on triples of obervables, which we now 
study in a special case. 

Theorem 2: If A, B, B' are bivalent observables (each 
mapping into !x,yj) with given joint distributions PA.B,PA.B, 
and P B.B' , then necessary and sufficient for the existence of a 
joint distribution P A.B.B" compatible with the given joints for 
the pairs, is the satisfaction of the following system of 
inequalities: 

PIA) +P(B)+P(B')<1 

+P(AB) +P(AB') +P(BB'), (2a) 

P(AB) +P(AB')<P(A) +P(BB'), (2b) 

P(AB) + P(BB ')<P(B) + P(AB '), (2c) 

and 

P (AB') + P (BB ')<P(B') + P (AB), (2d) 

where we write P ( ) for the probability that each enclosed 
observable takes the value X.4 

Proof Write S for the observable taking valuey iff S 
takes valuex,andleta = P(ABB l Then the terms in adistri­
bution PA •B.B " if there were one compatible with the given 
joint distributions for pairs, would have to satisfy 

P(ABE') = P(AB) - a, (3a) 

P(AEB') =P(AB') -a, (3b) 

P(AEE') = P(A) - P(AB) - P(AB') + a, (3c) 

P(ABB') = P(BB ') - a, (3d) 

P(ABE') = P(B) - P(AB) - P(BB') + a, (3e) 

P(AEB') = P(B') - P(AB') - P(BB') + a, (3f) 

P(AEE') = 1 -P(A) -P(B) -P(B') 

+ P(AB) + P(AB') + P(BB') - a. (3g) 

UsingO<a<min(P(AB ),P(AB '),P(BB ')), the condition that 
each term in (3) be non-negative produces the system (2). For 
example, requiring (3c) to be non-negative yields (2b). Con­
versely, if the system (2) is satisfied then choosing a as above 
insures that Eqs. (3) define the required distribution PA•B .B " 

If we combine Theorem 2 with the corollary to 
Theorem 1, we get a good working condition for when bival­
ent observablesAI' ... , An' B" B2 with preassigned joints 
PA B for 1 <i<k < n andj = 1,2, have a compatible joint dis-

j. j, 

tribution; namely, when there exist joint distributions PAIB, 

(for k < /<n andj = 1,2) such that the system (2) of in equal­
ities is simultaneously satisfiable for A = A j' B = B" and 
B' = B 2, 1 <i<n. In special cases these inequalities form an 
especially tractable system. 

Theorem 3: If A" A z, B" B z are bivalent observables 
with joint distributions PAA (for i = 1,2 andj = 1,2), then 
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necessary and sufficient for there to exist ajoint distribution 
PA,.A"B,.B, compatible with the given joints is that the follow­
ing system of inequalities is satisfied: 

- I<P(A jBj ) + P(Aj,Bf ) + P(Ai'Bf ) - P(Ai'Bj ) 

- PIA;) - P(Bf )<0, (4) 

for i=f.i' = 1,2 andj=f.] = 1,2. 
Proof To show necessity note that, assuming the distri­

bution PA,.A,.B,.B" for i=f.i' = 1,2, andj=f.f = 1,2, 

P(AiBjBj') = P(A,Ai'BjB)') + P(A,Ai,BjBj') 
<P(Ai'Bj ) +P(Bj') -P(Ai'B)') (5) 

and 

P (AiBjBj') = P (AiArBjB)') + P (A,A,. BjB}') 

<P(Ai·B),) + P(Bj ) - P(Ai'Bj ). 

Also 

O<P(AiEjEf ) = P(Ai) - P(AiBj ) - P(AiBf ) 

+ P (AiBjBf)' 

and 

O<P(A}ljBf ) = I-P(Ai )-P(Bj }-P(B/} 

(6) 

(7) 

+ P(AiBj ) + P(AiBf ) + P(A,BjBI ). (8) 

Then (5) with (7) yields the right-hand side of(4), and (6) with 
(8) yields the left-hand side of (4). In order to show sufficien­
cy, consider inequalities (2), first for B = B" B' = Bz, and 
A = A 1 and then, similarly, for A = A 2' If these eight in­
equalities hold simultaneously for one and the same P (B ,Bz) 
then, by Theorem 2 and the corollary to Theorem 1, we have 
the requiredPA,.A,.B,.B,' To show that inequalities (4) guaran­
tee all this, let n = 1,2 and m =f. k = 1, 2; set 

y = min(P(AnBm) + P(Bk) - P(AnBk),P(Bm),P(Bk )) 

(9) 

and define P (B IB2) = y. We can fill out the rest of the distri­
bution P B B, by letting P (E IB2) = P (B I) - y, 
P(B IE2) ~ P(Bz) - yandP(E,E2) = I - P(B,) - P(B2 ) + y. 
Then (9) and the left-hand side of(4) imply that 
P(Ai) + P(B,) + P(B2)<1 + P(AiB,) + P(AiBz) + P(B,Bz) 
for i = 1,2. Similarly, (9) and the right-hand side of(4) imply 
the remaining six inequalities corresponding to (2b), (2c), and 
(2d) for the successive A = A " A2 ; B = B" and B ' = B2• 

3. CORRELATION EXPERIMENTS AND HIDDEN 
VARIABLES 

We apply the preceding results to quantum correlation 
experiments. These involve distinct measurements of two 
noncom muting, bivalent obvservables (with values ± 1) A" 
A2 in spacetime region R, and of two noncommuting, bival­
ent observablesB I, B2 (values ± I) in region R z. Ideally, R, 
and Rz would be spacelike separated. In any case, we assume 
that each A i commutes with each Bj • Each measurement is 
performed on one of a correlated pair of particles, for exam­
ple, on one of pairs of photons emitted in the singlet state 
from an atomic cascade (see Ref. 2). Various sets of as sump­
tions about the workings of the experiment have been shown 
to lead to the probabilities of the experiment (i.e., the ob­
served distributions for A;.Bj and for the commuting pairs 
Ai' Bj ) being constrained by the system of inequalities (4). 
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Let us refer to these, collectively, as the Bell /CH inequalities. 
It follows from Theorem 3, that the Bell/CH inequalities 

hold for the probabilities of a quantum correlation experi­
ment if and only if there exists a joint distribution PA,.A,.B,.B, 
for the observables of the experiment that is compatible with 
the observed distributions for the singles Ai and Bj and the 
commutingpairsAi' Bj • We now show, in tum, that theexis­
tence of such ajoint distribution function is equivalent to the 
existence of a deterministic hidden variables theory for the 
experiment. Such a theory is defined as follows. LetA " ... , An 
, ... be observables of a quantum system, in a given state '/I. A 
deterministic hidden variables theory for these observables 
(in that state) consists of a classical probability space 
fl = <A, oiA ), P), where A is a nonempty set (the "hidden 
variables" = "complete states" of the system), u(A ) is a u­
algebra of subsets of A and P is a probability measure on 
u(A ). We require that there is a mapping A-A ( ) from the 
observables A = Ai to random variables on fl, where the 
range of A ( ) is the spectrum of A and satisfying 

P: =PAI i' 

for each given observable A = Ai' and 

P'::'B =PAI I.BI I (D2) 

for all commuting pairs, A, B among the given observables. 
! In (D2) the left-hand side is the quantum joint distribution, 
determined by 

P1B(S X T) = <Xs(A )XT(B )'P' (10) 

On the right-hand side of (D2)' 

PAl I.BI I(S X T) = P [A -1(S)nO -I(T)] (11) 

is the joint distribution of the random variables A ( ), B ( ).) 
I t is straightforward to see that there exists such a deter­

ministic hidden variables theory for A 1,A2"" if and only if 
there is a joint distribution for A 1,A2'''' compatible with the 
quantum mechanical distributions P: and P: B' For given 
such a hidden variables theory we can define th~ distribution 
for A I' A 2, ... by 

PA, .. A". = PA, ( )"'PA.,( ) ... ; i.e., 

as the usual product measure. Conversely, suppose we have a 
joint distribution PApA". compatible with the quantum 
single and joint probabilities (for commuting pairs), then let 
A consist of all sequences <a I' a2, ••• ), where aiE spectrum oj 
Ai' Let u(A ) consist of all the infinite-dimensional Borel sub­
sets of A w, and define P by 

P(SIX"'XSn X .. ·) = PAI ... A".(SIX"·XSn X .. ·). 

Then (D I ) and (D2) follow from the compatibility require­
ments on PA, •...• A , •.. if we associate with observable Ai the 
random variable Ai ( ) defined by 

Clearly, this same equivalence between hidden variables and 
joint distributions obtains if we replace the left-hand side of 
(D I ) and (D2) by any given distributions. In the case of the 
quantum correlation experiments, the weight of evidence 
suggest that the observed distributions are those of quantum 
mechanics (see Ref. 2). But even if this were not so, we could 
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ask about the possibility for a hidden variables theory re­
turning the experimentally observed probabilities, whatever 
they are, on the left-hand side of(Dtl and (D2)' We summa­
rize the bearing of our results on this question in the follow­
ing theorem. 

Theorem 4: For a correlation experiment with observa­
bles A I A2, B I' B2 and with exactly the four pairs Ai' Bj 

(i = 1,2;j = 1,2) commuting, the following statements are 
mutually equivalent: (1) The Bell/CH inequalities hold for 
the single and double probabilities of the experiment; (2) 
there is a joint distribution PA,.A,.B,.B, compatible with the 
observed single and double distributions; (3) there is a deter­
ministic hidden variables theory for A I' A2, B I, B2 returning 
the observed single and double distributions; and (4) there is 
a well-defined joint distribution (for the noncommuting pair) 
PB,.B, andjointdistributionsPAI.B,.B, andPA,.B,.B" each of the 
latter compatible with PB, •B, and with the observed single 
and double distributions.5 

4. OTHER HIDDEN VARIABLES 

There are observables whose quantum mechanical pro­
babilities for certain states of correlated quantum systems 
violate the Bell/CH inequalities. Likewise, in most of the 
correlation experiments the observed probabilities also vio­
late these inequalities. Thus both theoretically and experi­
mentally we have a refutation of the possibility of determin­
istic hidden variables. Before the investigations initiated by 
Bell on correlated systems, however, there were other no­
hidden-variables results. The strongest recent one is due to 
Kochen and Specker (Ref. 3). We show here the connection 
between their work and our investigation of joint probabili­
ties and deterministic hidden variables. 

Kochen and Specker begin by defining a hidden varia­
bles theory, for a set 0 of observables of a quantum system in 
state '/I, exactly as in our definition in the preceding section 
for such a deterministic hidden variables theory, including 
(Dtl for every AEO, but not requiring (D2) for commuting 
pairs. Let us refer to this as a weak hidden variables theory. 
They then suggest that a reasonable-looking formal require­
ment, in addition, would be to have the algebra of operators 
mirrored by the algebra of random variables. Thus they add 
the requirement 

J(A)(A) =J[A (A)] (KS) 

for all AEA and for every Borel functionJ (and for all AEO). 
Our first result here is to show that if the set 0 is large 

enough, then (KS) is equivalent to (D2)' Specifically, define a 
set of observables 0 to be large enough if (1) whenever AEO 
and BEO and AB = BA, then ABEO, and also there is some 
observable CEO such that A = J(C) and B = g(C) for Borel 
functionsJ and g; and (2) whenever AEO and S is a Borel set, 
thenXs(A )EO. 
Lemma: If 0 is large enough, then for AEO, BEO and 
AB = BA, (KS) implies 

AB(A) =A (A )B(A). (PR) 
Proof We have that A = J( C) and B = g( C) for CEO. By 

(KS),A (A) =J[C(A ))andB (A ) =g[C(A )).ButAB =Jg(C). 
So by (KS), AB(A) =Jg(C)(A) =Jg[C(A)] 
=J[C(A )]g[C(A)] =A (A )B(A). 
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Theorem 5: If 0 is large enough, then a weak hidden 
variables theory for 0 satisfies (KS) only if it satisfies (02) for 
all commuting pairs A, B in O. 

Proof It follows from (0 d and the lemma, that 

P:'B(S X T) = (Xs(A )XT(B)!/I = p;~A)x,.{B)(I) 

= PXs[A( )JXT[B( ) J(I). 

By (KS), this yields 

P :'B (S X T) = P [ {A Ix s (A (A )) = X T(B (A )) = I} ] 

= P [A -1(S)nB -I(T)] = PA,B(S X T). 

There is nearly a converse to this theorem, as follows. 
Theorem 6: If 0 is large enough, then the following are 

equivalent. (1) There is a deterministic hidden variables the­
ory for 0; (2) there is a weak hidden variables theory for 0 
satisfying (KS) almost everywhere; (3) there is a weak hidden 
variable theory for 0 satisfying (PR) almost everywhere. 

Proof We show that (1) implies (2), that (2) implies (3), 
and that (3) implies (1). To show that (1) implies (2), suppose 
we have (02) for all commuting pairs A, B in O. We want to 
show thatf(A )(..1. t e = f[A (A )]; i.e., that 
P [1..1. li(A )(..1. ) # f[A (A )])] = O. Let y be any number in the 
spectrum of f(A ), and let S = 1..1. I f[A (A )] = y} and 
T= 1..1.lf[A (A)] =y}. We want P(SnT) = P(SnT) = O. 
ThiswillfollowifwehaveP(S) = PIT) = P(SnT).From(OI) 
and the usual rules for functions of observables, we have 
PIT) = P[!..1.IA (A )~-I(y)}] = P !,((-I(y)) = P J;A )(y) = PIS). 
= PIS ).) Using the spectral representation of A, it follows 
that XD(A )Xf(D)U(A )) = XD(A ) for any set D, where 
f(D) = !f(x)lxED }. Hence, 
P !'J(A dD Xf(D)) = (XD(A ) I/' = P !,(D). In particular, 
P !'J(A )U-I(y)X{Y}) = P !'U-I(y)) = PIS) = PIT). But, 
PAJ(A) U-I(y) X {Y}) = P (SnT). The conclusion now fol­
lows from (02), That (2) implies (3) is a consequence of the 
lemma. Finally, the derivation of (1) from (3) has already 
been carried out elsewhere6 and, since it involves no new 
principles, need not be repeated here. 

This theorem has an immediate corollary that applies to 
the correlation experiments. 

Corollary: If 0 is large enough, then a necessary condi­
tion for there to exist a weak hidden variables theory for 0 
that satisfies (KS) [or (PR)] is that there exists ajoint distribu­
tion for every finite subset of 0, one compatible with all the 
well-defined quantum mechanical single and joint probabili­
ties in that subset. 

If we consider the observables A I' A 2, B I' and B2 for a 
correlation experiment, then clearly there is a finite, large 
enough set 0 containing them all. According to the corollary 
above, and Theorem 4, the failure of the BellfCH inequal­
ities for particular correlated systems implies that there is no 
weak hidden variables theory satisfying (KS) for any finite 
large enough set of observables of such a system. It was just 
the tying down of the no-hid den-variables results to such 
finite systems of observables that was the central concern of 
the Kochen and Specker results. Our work in this section 
and the previous one shows that the BellfCH inequalities for 
the correlation experiments achieve the same end. 
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5. COMMUTING OBSERVABLES 

Our investigations suggest that what the different hid­
den variables programs have in common, and the common 
source of their difficulties, is the provision of joint distribu­
tions in those cases where quantum mechanics denies them. 
In this section, we formulate an intuitive criterion for a joint 
distribution, and show that its satisfaction in quantum me­
chanics leads to the usual connection between joint distribu­
tions and commuting operators. 

If A and B are random variables over a common prob­
ability space with measure P, then for any two-place Borel 
functionfand any Borel set S, the joint distribution PA B is 
well defined, as is the random variablef(A,B), and they sa­
tisfy the condition that PA.BU-I(S)) = Pf(A,B)(S), We now 
propose, essentially, the same condition as a criterion for 
when several observables of a quantum system have a joint 
distribution, as follows. 

We shall say that observables A I' ... , An of a quantum 
system satisfy the joint distribution condition [briefly, (jd)] 
just in case, corresponding to every n-place Borel function/, 
there is an observable of the system with operator 
./lA I, ... , An), and corresponding to every state cP of the sys­
tem there is probability measure f-L 1/'. A,. '" An on the Borel sets 
of Rn that returns the quantum single distributions P!, as 
marginals, such that ' 

(12) 

for every state cP and Borel set S of reals. 
Theorem 7: ObservablesA I , ... ,A n satisfy (jd) if and only 

if all pairs commute. 7 

Proof If A I' ... , An form a commuting set thenf(A., .. " 
An) is well defined for every n-place Borel function/, and the 
usual joint distribution determined by 
f-LI/'. A, .. AJSI X .. , XSn) = <Xs, (A .J"·XsJAn) I/' satisfies (jd) 
for all states CP. To show the converse we will show that if(jd) 
holds and A = Ai' B = Aj then the spectral projections 
Xs(A ), XT(B) commute for any Borel sets S, Tofreals. So 
suppose that i,j are fixed and S, T are given Borel sets. Then 
there are n-place Borel functions! and Borel sets of reals S', 
T' such that 

(13) 

and 

RX"·XTX .. ·XR=!-I(T'), (14) 

~here S occurs in the ith place in (13), and Tin the} th place 
In (14). For example, we can define a Borel functionf by 
f(x l, ... ,xn) = o for x,EfSandxjEtT,f(xl' , .. , xn) = 1 forxiES 
and xjET,f(x., ... , xn) = 2 for xiES and xjEtT, andf(x l , ... , 

xn) = 3 for xiEfS and xjET. If S' = 11, 2l and T' = 11, 3} 
then (13) and (14) hold. For such an/, we havefrom (jd) that 

P!,(S) =f-LI/'.A, .. AJRX .. ·XS X"'XR) 

= f-LI/',A, .. An((-I(S')) 

= pI/' (S') fIA, ..... An) . 

Since (15) holds for all states CP, it follows that 
Xs(A) = Xs·U(AI' .. " An))· Similarly, 
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XT(B) = XT'(f(A I , ... , An)}· Hence,Xs(A) commutes with 
XT(B). 

The criterion (jd) and Theorem 7 help us to understand 
the significance of the violations of the Bell inequalities for 
the correlation experiments, for the observables A I' A2, B I' 
B2 of the experiments (with values ± 1) do not form a com­
muting set. Hence, by Theorem 7, if/(xI' X 2'YI'Y2) 
= x JI, + X Jl2 + XzY2 - XzYI and we try the correspondence 

rule/tAl' A 2, B" B 2 ) = A,B, + AIB2 +A2B2 -A2BI then 
Eq. (12) will fail for some set S and state 1/1. In particular, if S 
is the closed interval from - 2 to + 2, then/ - J (S ):2! - I, 
I J4 and the left side of(12) must be 1 for any measure. But in 
certain singlet states 1/1 (namely, those for which the Bell/CH 
inequalities fail) the quantum mechanical probability on the 
right side of (12) will differ from 1. Thus violations of the 
Bell/CH inequalities are particular cases where (jd) fails, as 
Theorem 7 tells us it somewhere must, for observables not all 
pairs of which commute. [Of course, it is Bell's important 
and lasting contribution to have found cases especially sim­
ple, and also experimentally tractable, where (jd) does fail.] 

It seems natural to take (jd) as a criterion for when ob­
servables have a joint distribution. It is a coarse-grained cri­
terion, not sensitive to the particular state of a system. As we 
have seen in the preceding sections, more finely grained cri­
teria (and hidden variables are among them) are equivalent 
to constraints (like the Bell/CH inequalities) that some 
quantum systems violate in certain states. These violations 
have been experimentally confirmed. Perhaps, then, we 
ought to accept the straight-line induction; that where (jd) 
fails, and quantum mechanics does not give a well-defined 
joint distribution, neither would experiments. After all, if we 
hold that probabilities (including joint probabilities) are real 
properties, then some observables may simply not have 
them. 
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It is shown that the study of nonbijective transformation requires a fiber bundle formulation of 
mechanics. The conditions upon which nonbijective canonical point transformations can be 
defined are given. Then, as an example, we apply that theory to the study of the Coulomb 
problem in two and three dimensions. The Hopffibration leads to an inverse harmonic oscillator 
problem. 

PACS numbers: 03.20. + i 

I. INTRODUCTION 

For a decade, there had been an upsurge of interest in 
canonical transformations from both classical and quantal 
view points. From the beginning, it has been clear from ex­
amples (Stiefel et al., I Cisneros et al., 2 Boiteux3

,4) that nonbi­
jective point transformations might be useful. In quantum 
mechanics, those transformations connect operators with 
different spectra which as such cannot be deduced from one 
another by unitary transformations, If we wish to restore a 
one-to-one relation between states and matrix elements, in 
order to get the spectrum of an operator from that of an­
other, we must kill the superfluous states by auxiliary condi­
tions, These constraints result in the existence of a Lie group 
of transformations. Subsequently, Moshinsky et al. 5

-
H sys­

tematically studied that group on examples and named it the 
ambiguity group. 

However, all the previous papers lack mathematical 
rigor, due to the nonregularity of nonbijective transforma­
tions; also a clear definition of the ambiguity group is miss­
ing, This paper intends to solve these problems in the case of 
point transformations, The general situation can be studied 
in the same way, but with a little more involved 
mathematics, 

II. OUTLINE 

It turns out that the suitable mathematical framework 
for our purposes is fiber bundle theory, 

Therefore in Sec, III we give some definitions and 
mathematical results in the differential geometry of fiber 
bundles, Then we state our main theorem about the condi­
tions under which a nonbijective canonical point transfor­
mation can be defined. 

Section IV is devoted to some applications, In particu­
lar, we study trivial nonbijective point transformations and 
discuss the Coulomb problem in two and three dimensions, 

Finally in the conclusion we outline the extension to 
general nonbijective canonical transfor-mations. 

III. SOME DEFINITIONS AND RESULTS' 
Definition 1: The configuration space of a dynamical 

system S with n degrees of freedom is a manifold X n with 

alThis paper covers a part of a Ph.D. thesis by the author, Paris University 
(1979). 

bJAssociated with the Centre National de la Recherche Scientifique. 

local coordinates ! Xi]. 
Definition 2: The manifold X n X R with local coordi­

nates (x i,t ) is the spatiotemporal configuration space of S, 
Definition 3: Let Mbe a manifold equipped with a met­

ric g and let M be a fibration over M equipped with a metric 
g, Let II: M-M be a fiber bundle, Let M m be the fiber at a 
point m of the base space M, 

Since M is equipped with g, we can define the orthogo­
nal space to the kernel of the projection n (this kernel is the 
so-called vertical space of the fiber at the point M), We con­
sider the restriction g' of g to this space which it is natural to 
call the horizontal space. 

Definition 4: We said that n is a Riemannian submer­
sion if n is an isometry of g' to g, 

Theorem 1: Hermann 10 has given a sufficient condition 
that a mapping of Riemannian manifolds be a fiber bundle. 

If qrX-+B is a Coo map of manifolds, tP.: Xx-+B",(x) is 
the linear map on tangent vectors induced by tP such that (i) tP 
has maximal rank on X, i,e., tP. (Xx) = B",(x) for allxEX; (ii)X 
and B are Riemannian manifolds, and the isomorphism 
tP.: XxltP; (O)-B",(x) preserves the inner products defined 
by the metrics on these spaces for all x in X. If X is complete 
as a Riemannian space, so is B. tP is then a locally trivial fiber 
space, If in addition the fibers of tP are totally geodesic sub­
manifolds of X,tP is a fiber bundle with structure group the 
Lie group of isometries of the fiber. 

Remark: If the typical fiber Fis compact, G is compact, 
A finite group is a Lie group with zero dimension. 

Definition 6: Let Ag be an operator on M which is natu­
rally defined in terms of g (e,g" the Laplace-Beltrami opera­
tor). Let A g,A gm be the corresponding operators on M,M m 

respecti vel y. 

Define A : onMbyA :(1)(m) = AgJ1'Mm)(m), where 
m = nm. A fis in a sense the "vertical part" of Ag. WriteA ~ 
= Ag - A: and call it the "horizontal part" of Ag. 

Theorem 2: (Berard Bergery and Bourguignon, Ref. 11), 
[Af',Ag] = 0 ifthe fibration II:(M,iI-+(M,g) is a Riemannian 
submersion with totally geodesic fibers. 

Then, if A kills the constant functions, 
A ~(fon) = Ag(f)on and A ~ acting on functions lifted 
from M can be identified with a natural operator A on M. 
This is strictly shown for the Laplacian by B~rard Bergery 
and Bourguignon and indeed we need only their result in our 
applications. But the result is true also for A from its expres-
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sion from vector fields. 
Remarks: There exists an expression of the vertical op­

erator AF in terms of vertical vector fields; on another hand, 
the Lie algebra of the holonomy group is generated by some 
vertical operators. 

We now specialize Theorem 2 in order to study quan­
tum problems. 

Let1' be defined on M; then if LF l' = 0,/' admits a 
unique representativel' on M (1' is deduced from/, by 
composition). 

If/a 2(M,g), then/olla 2(M,i). 
If the fiber is compact in order that the functions con­

stant along the fibers will be in L 2, then we have the main 
theorem 3. 

Theorem 3: Let Ag be an operator on a manifold (M,g) 
naturally defined in terms of the metric g. Then if 
ll:(M,i)-(M,g) is a Riemannian submersion with totally 
geodesic fibers with compact structural group G, then the 
AF-invariant part of the spectrum of the operator Ag on Mis 
equivalent to that of A g • Moreover, if G acts transitively on 
the fiber, A F can be defined in terms of vector fields defined 
by G. 

Under these conditions, II is called a diastrophic ca­
nonical point transformation and G the ambiguity group of 
that transformation. 

Remarks: When M = M, we recover ordinary canoni­
cal point transformations. When G is finite, it is better to 
directly use the invariance under the generators of G than 
Theorems 2 and 3. 

IV. EXAMPLES AND APPLICATIONS 
IV.1 Examples 

1V.1.1 Trivial diastrophic transformation 

This corresponds to the case of trivial fiber bundles 
M=MXF. 

IV. 1.2 Quadratic transformations 

One can give a classification of quadratic transforma­
tions preserving rotational invariance based on geometric 
properties of numbers. 12 A theorem by Hurwitz says that 
such transformation can exist only when the dimension d is 
I, 2, 4, or 8. We will not discuss here the case d = 8 connect­
ed with octonions. 

1) d = 1: There exists only one l3 :x = x2 and M = ]R+, 
M = ]R - [0 l. The ambiguity group is 1:2 = e2, the cyclic 
group with two elements. 

2) d = 2: ]R2_C3z = x] + ix 2• There are only two 
kinds of quadratic transformations: 

a)z = zZ* 

and M = ]R + ,M = ]R2 - [0 l. The fibers are circles and 
G = U(I) (notice that the fibers can be identified with the 
group). 

b)z=r 

and M = ]R2 - (O),M is a two-sheeted covering of M and 
G=Z2' 

3) d = 4: ]R4 -lHI3q = XI + iX2 + jX3 + kx4 the field of 
quaternions. Also, there are only two kinds of quadratic 
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transformations: 
a) q = qij*, 

M = ]R + ,M = ]R4 - [0). G = SU(2) and the fibers are three­
dimensional spheres in ]R4 centered at the origin. (Notice 
here again that the fibers can be identified with the group 
itself. ) 

b)x] =xi -x~ -xi +x~, 
X2 = 2(X]X2 + X3X4)' 
X3 = 2(X]X3 - X2X4), 

M=R3_ [Ol =S2 XR+;M=R4
- (0) =S3 X R+. This 

is the Hopffibration when Iql = I:S3_S2. G = U(l)and the 
fibers are circles in R4 centered at the origin. 

4) d = 8: Then the Hopf fibration S 7 X R + -S 4 X R + 
may be interesting for further study. 

IV.2 Applications 
1V.2. 1 The Coulomb problem in two dimensions 

In this case we shall see that G is finite. The Coulomb 
potential Vir) = - e21r is singular at the origin. Then 
M = R2 - [0 l. Therefore, the corresponding Hamiltonian 
H = p2/2m - e21r or, equivalently, the Schrodinger opera­
tor S E = H - E is not self-adjoint but only essentially self­
adjoint. SE has a unique self-adjoint extension anyway. But 
rS E is not symmetric on L 2(R 2 \ O,dx Idx2), because of the 
factor r. Using the transformation z = Z2 (IV.1.2.2b). 
(v/)(z) =/(Z2), V:L 2(R 2\O,dxl dx2)-L 2(R 2\O,dx l dx2); 
then V (rS E) V -I is symmetric on the subspace of 
L 2(R 2\O,dx 1 dx2/4r = dXI dX2) for which V -I exists be­
cause the factors rand 1/ r cancel. 

Now S;' = V(rSE ) V- I=( - (1/8m)A - Er2 - e2) is 
a harmonic oscillator Schrodinger operator. 

As already mentioned, it is preferable to directly use the 
invariance of the wavefunction under the discrete symmetry 
IEZ2• 

Then 

S;'7;; = (- (1/8m)A - & - e2 )7;;, 

17;; = 7;;, 7;;E'y2(M,dxl dx2)· 

Thus the bound-state Coulomb problem in two dimen­
sions is equivalent to an inverse two-dimensional harmonic 
oscillator inverse problem the energy of which is defined and 
equal to 4e2

, the angular frequency liJ = ( - 8E Im)I/2 of 
which is unknown, and the eigensoiution of which are uni­
variant under symmetry (X I,x2)-( - XI' - x 2 ). 

1V.2.2 The Coulomb problem in three dimensions 

Now, G is a continuous group. The first step is identical 
to the d = 2 case. But now, we use the quadratic transforma­
tion (IV.1.3b). Here more details on the Hopf fibration 14 are 
needed in order to get a complete answer. 

M=S2 X R +, M=S3XR +. 

This transformation reads in coordinates X I' x 2• X3 and 
XI' X2 , X3 , x 4 (see Kustaanheimo and Stiefel 15). 

X I = xi - X~ - X~ + X~, 
x 2 = 2(XIX2 + X3X4), 

x, = 2(XIX3 - X2X4), 
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and satisfy 
xi +x~ +x~ =r=(xi +x~ +x; +x~)2=r4. 

Let us introduce the notation 

if = i;, + jZI i;j,ZIEC 
induced by the relation H - C ED C. S 3 is the underlying space 
of the group SU(2) which can be parametrized by the Euler 
angles t/J,O,t/J. If qjj* = 1, 

i sin fi(¢ -",)/2 ) 

O· ' cos --e - ,('" + ¢)12 

2 

from which we get 

and 

- - t/J+t/J 0 
XI = rcos---cos-, 

2 2 

- -.t/J+t/J 0 x 2 = rsm---cos-, 
2 2 

- - t/J-t/J. 0 
X3 = rcos--sm-, 

2 2 

- _. t/J-t/J. 0 
X 4 = r sm --sm -, 

2 2 

X I = r sint/J cosO, 

X 2 = r sint/J sinO, 

X3 = r cosO. 

So (t/J,O) are the polar angles on the sphere S 2. Then t/J 
parametrizes the fibers which are great circles on S3. It fol­
lows that the Hopffibration is totally geodesic and the condi­
tions of Theorem 3 are satisfied since the group S I = U1 is 
compact. 

The unit vectors tangent to the fiber at (XI,X2,x3,x4) are 
± (lIrH - x4 , - x3, - X2,XI ). The length element is 

d$l = dr + r[dO 2 + sin20 (dqi + dt/J2) + 2 cosO dcp dt/J 1, 
from which we get the Laplacian 

- a2 3a 4[a2 a L1 =- +--+- -- +cotO-
4 ar r ar r ao 2 ao 

But 

L13=~~(r~) r ar ar 
+~[_l-~(sino~)+ _1_~], 

r sinO ao ao sin20 at/J 2 

wherer = r. Here, the symmetry of V (rSE )V- 1 arises again 
from an (lIr) X r cancellation arising from 
fT*(dx l .dx2.dx3.dx4 ) = (dx,.dx 2.dx¥4r. 

Then, the auxiliary condition which ensures the wave 
function If E is univalued, is L1 FifE = 0, or equivalently 
(a lat/J)lfE = 0, where a lat/J is the infinitesimal generator 
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along the great circles. 
Then the Schrodinger equation reads 

( - 8~ .14 - FJ2 - e
2)¢E = 0, ¢E.!f2(M) , 

- - a-rLFtPE = r- tPE 
at/J 

(
_a _J_a 

= -x4- +x3 - -x2 -
aXI aX2 aX3 

=0. 

The reader is referred to Boiteux3 for the resolution of that 
system. (See also Miyachi .10) In other words, the last condi­
tion exactly kills the irrelevant states among those of a de­
generated level of the 4-d harmonic oscillator in order to get 
the correct accidental degeneracy of the corresponding level 
of hydrogen atom. 

Remarks: The classical (Kepler) problem is solved in 
the same way. Thus the canonical nonbijective transforma­
tion works for the classical and the corresponding quantum 
problem as well. In particular, the ambiguity group is the 
same. 

The case of the hydrogen atom with a planar barrier 
through the origin also is easily solved because it transforms 
into a planar barrier in R 4 - [01 by means of the Hopf 
fibration. 

Indeed, the condition A ;1 = 0 can be replaced by 
A f 1 = a 1 and still preserves a one-to-one correspondence. 
However, in this case various sections of the fibration are 
inequivalent. In particular A Z now depends on a. 

v. CONCLUSION 

We have seen that nonbijective point transformations 
can be used in both classical and quantum mechanics. They 
require the introduction of particular fiber bundles which 
satisfy the conditions of Theorem 3. However, it is not too 
difficult to extend these results to general nonbijective trans­
formations. We will now outline that extension. 

We consider the cotangent bundle T *(X") to the con­
figuration manifold (the phase space) equipped with the nat­
ural metric g inherited from the natural Sasaki metric 17 of 
the tangent bundle T (X") as the base of a suitable fibration. 

Then all the aspects of Theorem 3 can be extended. In 
particular, A may be the Liouville operator (or Lie deriva­
tive). That is the classical situation. 

As for the quantal case, that structure is transported by 
the Weyl quantization which associates to Poisson brackets, 
Frechet-Poisson brackets. 18 An elementary example has 
been discussed recently by Newton. 19 

Note added in proof Since the completion of this work, 
a paper by G. H. Ringwood and J. T. Devreese has been 
published in J. Math. Phys. 21, 1390 (1980), dealing with the 
same problem. Their work is based on the construction of 
propagators in quotient spaces. The identity between the 
propagator prescriptions and nonlinear canonical transfor­
mations is not automatically fulfilled. Therefore it seems 
that the reliability of their results is not due to their method, 
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which in general is not correct, but to an underlying property 
of the transformation used, namely the Kustaanheimo-Stie­
fel map (see our results). 
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The case of a slightly anharmonic oscillator (with a /3x4 perturbing potential) is examined in the 
framework of stochastic electrodynamics (SED) in full detail. We obtain the stationary 
probability density and the mean energy, which differs from the quantum result at order /3 2. 

Using Kubo's linear response theory we obtain the absorption curve: the maximum absorption 
frequencies do not coincide with the quantum transition frequencies. From the calculation of the 
emission energy we show that the "radiation balance" is not exactly satisfied as soon as/3 #0, a 
property which disagrees with the quantum results. Finally, we discuss the consequences of this 
lack of radiation balance concerning Kirchhoff's law. 

PACS numbers: 03.65.Bz, 41.70. + t, 02.50. + s 

I. INTRODUCTION 

Stochastic electrodynamics (SED) is a classical theory 
which has been proposed as a possible alternative to quan­
tum theory. Basically SED is classical electrodynamics (in­
cluding Lorentz-Dirac radiation damping) supplemented 
by the assumption that there exists a (classical) electromag­
netic field in the whole space, which is so complex that it is 
appropriately treated as a stochastic field. 1--4 Assuming that 
its stochastic properties are Lorentz-invariant, it may be 
found that this background field must have zero mean value 
and a spectral density (see, e.g., Ref. 4a): 

e "'°:;1,. (e )de = J/ (OJ) = -, IOJI'. I x . ~ 

x 3c 
(I) 

where .:II/. (e) denotes the correlation function of the sto­
chastic process 1'/ (t ) (this relationship between .:II and ./ is 
the same as in Ref. 3). 

Consequently, the equation of motion in SED for a non­
relativistic charged particle (mass m, charge e) is a Lorentz­
Dirac type equation (called a Braffort-Marshall equation) 

mr = F(r) + mIT + eo'(t) (2) 

where, in addition to the external known force F(r) and the 
usual radiation damping force mIT (where, = 2e2/3mc-'J, 
we have a stochastic electromagnetic force eO'(t). This last 
term is written in the electric-dipole approximation, which 
neglects the magnetic force of the background field and the 
spatial dependence of the electric field 6'. 4h 

Equation (2) has so-called runaway (i.e., self-accelerat­
ing) solutions. A procedure to eliminate these undesirable 
solutions is to use, instead of Eq. (2), an integro-differential 
equation (see, e.g., Ref. 5). Applying this procedure to Eq. (2) 
and keeping the terms up to order, (, = 0.26 X 10- 6 a.u.) in 
the Taylor expansion of the deterministic force (Ref. 1, Sec. 
3B), we obtain the following equation: 

mr = F(r) + ,VF·r + eIfITI(t), (3) 

where O'ITI(t ) is a modified stochastic field with zero mean 
value and a spectral density (for each component) 

Y' ( ) I' V'ITI( ) = . /, OJ = l!i. IOJ . 
./ /, OJ ..,., ~ ., ., 

I + rOJ- 3c' I + ,-OJ-
(4) 

The theory constitutes, therefore, a well-defined prob­
lem of mathematical physics, but its solution is rather diffi­
cult, due to the nonwhite character of the stochastic field. It 
is only recently that the nonstandard techniques required to 
treat nonlinear problems in SED have been worked out 
(Refs. 3,6, and 2Ib). 

In the case of linear systems, Eq. (3) is easily solved by 
applying the Fourier transform method. Although the re­
sults are not fully identical with those of quantum theory, 
they are rather satisfactory. 1--4.7 

However, for nonlinear systems, such as the anhar­
monic oscillatorK.9 and the Kepler problem, «).II the results 
obtained until now are not in agreement with quantum 
theory. 

The aim of this paper is to study in full detail a slightly 
anharmonic oscillator (with a /3x4 perturbing potential) in 
SED. Some preliminary results for this problem were report­
ed in Refs. 8 and 9. 

The outline of the paper is as follows. In Sec. II, using 
the techniques worked out to solve non-Markovian stochas­
tic differential equations such as Eq. (3), we obtain the sta­
tionary probability density »'t) and the average energy, 
which is not the same as in quantum theory. Then, using Wo 
and the Kubo linear response theory, we calculate in Sec. III 
the absorption coefficient at each frequency. It is found that 
the first and second maxima of the absorption curve do not 
coincide with the quantum and experimental results. 

In Sec. IV we obtain the emitted power at each frequen­
cy, and we study the balance between absorbed and emitted 
power at each frequency ("radiative balance"). 

This balance is not satisfied in the background field of 
SED. Finally, we show that the anharmonic oscillator would 
fulfill this radiative balance condition only with a back­
ground field having the (Rayleigh-Jeans) OJ 2-spectrum, and 
we discuss the consequences of this lack of radiation balance 
in SED concerning Kirchhoff's law. 
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II. THE STATIONARY STATE OF THE (QUARTIC) 
ANHARMONIC OSCILLATOR IN SED 

A. The stationary density in the Markovian 
approximation 

We would like first to recall the basic ideas of the meth­
ods used to solve non-Markovian stochastic differential 
equations" [such as the Braffort-Marshall equation (3)]. In­
deed, this topic is not yet very well known except by special­
ists. In order to solve equations of this kind we use the fact 
that the damping and stochastic forces are much smaller 
than the deterministic force, due to the presence of the 
(small) parameter T. 

Therefore the relaxation time (namely, the interval of 
time required for the perturbation to have a finite effect with 
respect to the deterministic motion) is of order liT'::::::!. 10" a.u., 
whereas the correlation time of the stochastic force is of or­
der of 1 a.u. (Ref. 3, Sec. 4.A). 

In this case, namely a small stochastic force with a cor­
relation time short with respect to the relaxation time, two 
main lines of approximations to the solution of Eq. (3) are 
possible. They will be denoted by Lax-5 and Lax-6, respec­
tively, according to Secs. 5 and 6 of Lax's important paper. 12 

(a) In the Lax-5 method, the exact (non-Markovian) 
process in phase space I r(t ), pIt ) J solution of (3) is approxi­
mated by a Markov process; the corresponding Fokker­
Planck equation (FPE) is used as an approximate evolution 
equation for the probability density of the exact process. 

This method is based on the existence of a Markovian 
limit (Khas'minskii limit l3

) of the process when T goes to 
zero (for a review see Ref. 14). It should be mentioned that 
this approach was initiated by Stratonovich, 15 independent­
ly of Lax. 12 

(b) In the Lax-6 method, using a stochastic Liouville 
equation, an exact generalized Fokker-Planck equation for 
the probability density in phase space is obtained. 16 This 
equation was also obtained by de la Peiia-Auerbach and 
Cetto 17 by using the projection operator method or 
"smoothing method" of Frisch. 18 

From this exact generalized FPE we obtain an approxi­
mate second-order partial derivative equation of the 
"Fokker-Planck type" (see Ref. 16, Sec. III, and Ref. 19, 
Ref. 6c, Sec. II-B). The lack of uniqueness of equations ob­
tained by the two methods (a) and (b) is due to the non-Mar­
kovian character mentioned above. 

These equations may be reduced to a unique FPE for 
the stationary probability density in terms of some relevant 
constants of the deterministic motion corresponding to F(r) 
(Ref. 6c, Sec. III), using a method devised by H. Haken (Ref. 
19, Sec. XI-C-2). For an isotropic multiperiodic system, due 
to the isotropic character of the damping and stochastic 
forces, such relevant constants of motion are those two ac­
tion variables which are invariant under rotation (Ref. 20, 
Chap. II-2-a). 

This reduced FPE can also be obtained directly by cal­
culating, through perturbation methods, the variation of 
these "constants of motion" under the effect of the damping 
and stochastic forces, and by averaging these variations in 
order to get the drift and diffusion coefficients. The pertur-
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bation method may be applied directly to the equations of 
motion 21 or, following the main idea of Kubo's linear re­
sponse theory,22 it may be applied to the Liouville 
equation. 2J 

For one-dimensional systems the reduced stationary 
FPE involves a single constant of motion, e.g., the energy E: 

~[GI'W. + Gr:r:JWo] = 0 (5) 
JE ° JE ' 

where G E (G EE) is the reduced drift (diffusion) coefficient. It 
should be noted that Wo(E) is to be normalized in the whole 
phase space, i.e., S S ~)(E )dq dp = 1. Since the pair of varia­
bles ! t,E I is canonical, we have dq dp = dt dE; hence this 
normalization condition becomes 

1 = J J ~)(E )dt dE = J dE ~)(E )£dt = J dE ~)(E) T (E), 

where T (E) denotes the period of the orbit with energy E. In 
other words, ~)(E) is normalized with respect to the volume 
element T (E )dEinstead of dE alone (note that a similar situa­
tion is also encountered in statistical mechanics). 

The probability current J/o 

= G f;~) 
+ G 1:/, (J Wol JE ) is therefore a constant, and if ~) is to be 

integrable, it as well as its derivative must vanish at infinity, 
therefore, this constant must be zero, i.e., J/; = 0, hence 

~)(E)=Nexp[-JE GE(E') dE'], 
GH(E') 

(6) 

In the case of a one-dimensional periodic system the coeffi­
cients G E, G n. are given by (Ref. 6c, Sec. III-C) 

J J +x 
G I, = Tj/'X dt = Tm:h/x)2 dt = 21rmTOJ 1

,,): ~ n4lx" 1
2

, (7) 

G /Of; = e2 (X /Ii /, (8) d8Ji(t )i(t - 8) dt 
Jo :hi 

f X 

2 " V' ( ) 21 12 = 1Te OJ L ./ /, nOJ n x" , (8) 

where OJ is the fundamental frequency of the system, ./fJ /, (8) 
the correlation function of the electric field, and the x" 's are 
the Fourier components of the deterministic motion 

[ x( t ) = " ~~ '" x" e
i
",,)( ]. 

B. The stationary density and the averaged energy of 
the quartic anharmonic oscillator in SED 

We consider now an anharmonic oscillator with a po­
tential V = !mOJ6x2 + !mfJx4, wherefJ is a small parameter. 

In order to obtain the stationary density ~)(E) from Eq. 
(6) we must calculate the Fourier components x" and the 
fundamental frequency OJ, appearing in the coefficients (7) 
and (8), as functions of E. To do this, we could use the Lind­
stedt-Poincare method, which consists of eliminating the 
secular terms by expanding OJ as well as Xn in powers of fJ 
(see, e.g., Ref. 24). In this way we should obtain Xn and OJ as 
functions of Xo (see Ref. 25 for a general algorithm to solve 
this problem). Using the resulting expression for x as a func-
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tion of XO' we have Xo as a function of E and consequently XI! 

and w as functions of E. 
However, in our case it is possible to obtain X and w in 

terms of elliptic functions. 
Indeed, integrating the equation of motion along an or­

bit of energy E, we obtain 

f
X .... ,,(EI du 

t = x [2/m(E _ V(U))]1/2' 
(9) 

where we have taken the origin of time for 

x(O)=xmax (E ) 

= [(w6lfi) ( - 1 + [1 + (4Efi Im(6) ]112) ]112 

maximum value of X for a given energy E. Making in (9) the 
change of variable s = arccos [ulxmax (E)], we get 

r'" ds 1 
t= Jo wo(l +4y)I/4 [1_k 2sin2s]I/2' (10) 

wherey = (Efi Im(6), k 2 = !(I - (1 + 4y)-1/2), and ¢J 
= arccos [xl x max (E ) ]. The period T corresponds to mak­

ing ¢J = 21T in expression (10), hence 

T=~ K(k) (11) 
Wo (1 + 4y)1I4' 

where 

i
TT!2 ds 

K(k)= 0 1 111 
o [ 1 - k -sin-s] -

( 12) 

is the complete elliptic integral of the first kind. 
K is an analytic function for I k I < 1 (Ref. 26, 21.72) giv­

en by the expansion (Ref. 27, Chap. 6, Sec. 3). 

lK(k) = ; (1 + (!) 2k 2 + ... + [(2n2~!I)!!rk21! + .. ) (13) 

This function has no zeros at least for I k I < a = 0.94, because 
IlK(a)1 < 2IlK(0)1· Therefore lU = (21T/T) is an analytic func­
tion of k for Ik I <a, and then ofy for 
Iyl < !(4a4 

- 2)/(4a4 
- 1) (the calculation is easy but some­

what lengthy). Using (13) and (11) we obtain 

(14) 

In this way we have obtained w as a function of E. Now, from 
(15) we havex = X max (E )cn(lUot (1 + 4y)1I4,k), wherecn(u,k) 
(with u = lUot (1 + 4y) 114) is the Jacobi elliptic function (see 
Ref. 26, Chap. XXII). This function may be written as the 
following Fourier series (Ref. 27, Chap. 6, Sec. 19): 

x = x""" (E )cn(u,k ) 

= 4(~)J/2(rJ ~ q" t~ cos(2n + I)M, (15) 
/3 1lL-() 1 + l" + I 

where q = exp[ - 1T(JK.(k ')I!K(k ))], k ' = (I _ k 2) ) 12. 

q is an analytic function of k for I k I < I (Ref. 26,21.712) and 
therefore an analytic function of y for Iyl <!; (this value is 
obtained by putting a = 1 in the expression 
W(4a 4 

- 2)1(4a4 
- 1) given above for the case Ik I <a). Using 

an expansion due to Hermite we may express q as a function 
of k 2 (Ref. 27, Chap. 6, Sec. 20): 

q=(k 2/2 4 )1' +(k2/2)+~k4+0(k6)1' (16) 

and therefore as a function of y, 
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q = (Y124 )! 1 - iY + ~~y2 + O(y-l)j. (17) 

From Eqs. (7), (8), and (15) we have the reduced coefficients 
given by 

5 oc 21'1 + 1 

G E = 321TmT~ " (2n + 1)4 q 2 T' (18) 
fi n~o [1 + q n + -

1", (2 +lf211+1 
GEE=161Te2~IYI,[(2n+l)w] [n 21!q+1 2' 

/3n=O l+q ] 
(19) 

where we have used Y I, (lU) = .Y'I, ( - lU). 

These coefficients, (18) and (19), are analytic functions ofy 
for Iyl <!(4a4 

- 2)/(4a4 
- 1) because, on the one hand, w is 

an analytic function ofy for y < (1/4) (4a4 
- 1)/(4a4 

- 2), as 
we saw above, and on the other hand, Iq I < 1 for I k I < 1. The 
proof of the latter property is as follows. 

In Ref. 26, Sec. 21.7, it is shown that Iq(k)1 < I, when a cut 
from 0 to - 00 and from 1 to + 00 is made in the complex 
plane of k 2, because in this region Re [In q(k )] < O. Moreover, 
it is easy to see directly from the integral expressions of lK(k ) 
that this property [namely Iq(k)1 < 1] is also true for 
- 00 <k2 <0. Therefore,lql < 1 when Ik I < I, Q.E.D. 

Therefore, we have 

__ - mTW 1 ..2.- 2 9 _ " 0 3 G E 2 Z [ (Y (3w) ) ] 
GEE - eZy W(lU) + 256 Y Y 1,.(lU) + (y). 

(20) 
Using the spectral density (1) of the background field in SED 
and the expansion (14) for w, in (20) we obtain 

G
E

, = _2_[ 1 _ iY + :~~y2 + O(yln. 
GUo. fuvo 

(21) 

From expression (6) and (21) we obtain through order fi2 

[
Eo 

WorE) = N exp[ - 2E lfuvo] 1 + ~fi--5 
fzmwo 

fi2E" ( 43 E 9)] +--o-q --+ , 
fzm-w o 64 fuvo 32 

(22) 

where N is the normalization constant in the phase space (see 
below). This expression (22) is valid at least for energies such 
that (E "fi Ifz2mw~)~ 1 [i.e., y~(fz/3lmwo')2/']. 

For extremely large energies (y~ I), for example y> l!fi, 
we may obtain the behavior of Wo(E) from the coefficients 
(18) and (19). Using (1) as spectral density, according to (18) 
and (19) GEl w<, and GEE I Wfo are analytic functions of q, 
when Iql < I, because the series involved in these coefficients 
are uniformly convergent in this region. Moreover, q and 
(rJY - 1/

4 [see (11)] are analytic functions of z = l 12. There­
fore, G E y-<,14 and G EE y-6/4 are analytic functions ofz. The 

region of analyticity is given by Ik 2 - !I < (a 2 
- !), which 

corresponds to Iz I < H 1 + (1/(2a 2 
- 1 f) ] - 1/ 2 • We therefore 

have 

G /, = 4(4y)-1I4 K(I/V 2){ ~ (2n + 1)4 e (2" ) II'" I 
G /,'/,' 7Tfuvo "L-() [1 + e 12" I II"]:' 

~(2n+l)5 e-(2n+ll1T }[1+0(y-1/2)], (23) 
I! ~ 0 [1 + e - (2n + I ITT F 

where we have used k (y = (0) = I/V2 and 
q(y = (0) = e -1T[lK(I/V2)11K(1/V2)] = e - 1T. Hence from 
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expression (6) we obtain for large energies (y> 1) 

Wo(E)~const·exp[ - (Cm'/4/11/31/4)E3/4], (24) 

whereas from small energies we have from (22) the following 
behavior: 

(25) 

For the intermediate range of energies, i.e., 
(11/3 /m(6) -d <E /wo < (11/3 /m(6)-I, with 0 <d < 1/3, 
~)(E) is bounded by its value at the lower energy, namely 
w o(11/3 /m(6) - d, due to the fact that Wo(E) is a monotonous 
decreasing function of E (G E /G EE;;.O). This value may be 
obtained from Eq. (22), because this expression is valid at 
least for energies such that E /wo«11/3 / mw6 )-1 /3. 

Thereafter, for any integration involving ~)(E), we 
may decompose the integration interval (0,00 ) into three 
parts. For the part corresponding to large energies (y;;'1//3), 
we find a negligible contribution (smaller than any power of 
/3 ), due to the behavior of ~l(E ) given by Eq. (24). The same 
result is found for the second part (intermediate energies) by 
using the bound given above. Therefore, the contribution of 
the range of energies such that E /wo ;;:; (11/3 /m (6)- b (b > 0) 
will be negligible. 

Then we may use Eq. (22) for obtaining through order 
/3 Z the normalization constant, namely N = (1/Il1T) 
X [ 1 - -&,(11/3 /mw6 )2] and the mean energy ff: 

£ = Wo [1 +.1 11/3 + ill ( fI/3 )2] (26) 2 8 3 256 3 mwo mwo 

which differs, even in the sign, from the quantum result [Ref. 
28, formula (1.17)] at the second order in /3: Ez(QT) 

= - ?ZI8(f1/3 /mw6 )Zwo' However, the first-order perturba­
tion energy £, = ~ /3 (Ilz /mw~) is the same according to SED 
and quantum theory, but it must be pointed out that this 
result is not very specific2'i: whatever the damping force and 
the spectral density of the fluctuating force [provided they 
imply an integrable stationary density Po(x) for the unper­
turbed harmonic oscillator], the first-order correction to the 
energy is given by2'i 

£1 = f VI (x)Po(x) dx, 

and this coincides with the quantum expression, provided 
Po(x) is the same Gaussian position density as in quantum 
theory (this is actually the case for SED). 

III. THE ABSORPTION COEFFICIENT 

Knowing Wo(E), we may apply the Kubo linear re­
sponse theory22 in order to study the energy absorption of 
the anharmonic oscillator in the stationary state from an 
external electromagnetic field. 

For a multi periodic system in SED the absorption coef­
ficient (ratio of the absorbed power to the incident power) 
a(w) may be obtained in the form of a series over all 
harmonics. 30 

In the one-dimensional case the system is simply peri­
odic, and this coefficient is given by 
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for w;;'O, where we have used (6). In this expression [ L ~ ,,,In 

means that we take the energy which corresponds to 
w' = win. 

In our case, namely an even potential for which the 
fundamental frequency w' has a minimum value Wo (corre­
sponding to E = 0), only a finite number of odd terms con­
tribute to a(w). Furthermore, we can restrict ourselves to just 
one term, because a(w) is not negligible only for frequencies 
very close to (2n + 1 )wo. 

The essential point is that, for frequencies such that 
w - wo>(11/3 /mw~), Wo(E (w))« 1/1l)(f1/3 /mw6 Y' V P;;'O, 
whereas G E /G EE, dE /dw, and IX n 12 are bounded by powers 
of/3. 

In order to prove this property, we consider first 
dE /dw, which is given by dE /dw = - (21T/WZ) (dT /dE)-'. 
From (11) we have 

dT = -±-[dlK dk __ lK_~](1 + 4y)-1/4. (28) 
dE Wo dk dE 1 + 4y mW6 

Then, using in (28) 

dk 1 /3 -=---(1 +4y)-3/2 
dE 2k mW6 

and 

dlK lE lK 
-=----
dk kk,2 k 

(Ref. 27, Chap. 6 Sec. 3), where lE is the complete elliptic 
integral of the second kind, we obtain 

dT = 4/3 [(1 + 4y)-'IZ (~_ lK) -lK](1 + 4 )-5/4. 

dE mwg 2k kk ,z k y, 
(29) 

but using in (29) lK;;'1T/2 and E<1T/2 (Ref. 27, Chap. 6, Sec. 
3), we have 

dT < 1T/3 (I + 4y )-S/4( __ 1_)<0 (30) 
dE mwg k ,2 

and then dw/dE;;.O and using w;;'(uo and (30), 

dE mu/ _< __ °(1 + 4y)'/4[ I + (I + 4y)'nj. (31) 
dw /3 

On the other hand, we have from (18) and (19) 
G E/G EE«2/wo) and 

., 
w -

=_0 [-1 +(1 +4y)I/2]. 
/3 

Therefore, we have shown that G "'/G EH, Ix" 1
2

, and dE /dw 
are bounded by powers of /3. Q.E.D. Now, from (14) we may 
obtain E as a function of w: 
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E(w) = ~ mW6 w - WO[l + E-(W - wo) 
3 /3 Wo 12 Wo 

+ ~(W - Wo)2 + 0 ((W - WO)3)]. (32) 
72 Wo Wo 

This inverse function E (w) = (1//3 )y(w) is analytic around Wo 

with a convergence radius independent of /3. Then, for /3 
small enough, it will be analytic for frequencies such that 
I(w - wo)/wol :S (f1/3 /mwb ) 1 - c, for some c between 0 and 1. 
In this region, we have from expression (32) 
E /wo:S (f1/3 /mw~) - c, and therefore, using the monotonous 
increasing character of E as a function of w, for W such that 
(w - wo)/wo ~ (f1/3 /mw~)1 - c, we shall have E /wo 
~ (f1/3 /m w~) - c.Now, from the monotonous decreasing 
character of Wo(E) we obtain for this range of energies 

Wo(E):S ~xp[ _ 2(~) -C] « fl/33 )P ..!.., 
fzrr mwo mwo fz 

Vp>O. Thus we have achieved the proof that ~)(E(w)) is 
much smaller than any positive power of /3 for frequencies w 
such that w - wo>f1/3 / mw~. 

Therefore, only for frequencies w = (2n + 1 )w' such 
that w'>wo and (w' - wo)/wo:S (f1/3 /mw~), the terms in (27) 
are not negligible, and the contribution to this range of fre­
quencies may come only from the term 

[ IX2n + 112 G:
E 
dd~ ~)] 

G w '"' = ,"/(2n + I) 

of the sum (27). Then the first absorption line of the spectrum 
(frequencies very close to wo) is given by 

8rr.1, [ , G f: dE ] 
ad(v) = +-e-(v Ixll- n:-'~) 

3 G dw "J='" 
(33) 

Using (21), (22), (32), and Ix 112 obtained from (15) and (17) as 
a function of y, we obtain for frequencies w>wo such that 
(tv - wo)/wo«f1/3 /m (v~ )21-', the following expression for 
ad(v): 

a (w) = 128 rr2mwo5e2NLl [1 + ~Ll + 719 Ll 2 

I 27 /3 2fz2 4 144 

_ ~ <5Ll 2 _ ~ <5Ll 3 + 578 <5
2Ll4] 

9 /3 2 /3 81 /3 2 

xexp [ _ ~ <5Ll ] 
3/3' 

where <5 = mW6/fz and Ll = (w - wo)/wo. 
The maximum of this first absorption line, namely 

(34) 

WI = Wo + if1/3 /mw~, does not coincide (already to first or­
der in /3 ) with the frequency of the first quantum transition 
[Ref. 28, formula (1.17)]: 

The power (denoted la,) absorbed from the background 
field of SED in the frequency range corresponding to this 
first absorption line is given (up to terms of order /3 2) by the 
expression 
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(35) 

wherep«v) = (3/4rr2)./' /, (w) = (fz/2rr2c.1)w~ is the spectral 
energy density of the random field (see, e.g., Ref. 3, Sec. 3.A). 

The contribution of the range of frequencies 
3wo> w ~ wo[l + (f1/3 /m(6)1 - cJ (0 < c < 1) to la is negligi-, 
ble, because the integrand may be bounded, as we have 
shown above, by a power of {3 times a term coming from the 
probability density, which is given (due to the monotonous 
increasing character of Wore (w)) as a function of w) by 

~)(E):S~XP[ -2(!Y!.....) C]«~)P..!.., 
fzrr mw~ mwo fz 

v p>O. Therefore, the integral practically reaches its limit 
for A >(VII(f1/3 /m(vi~), and taking A <wo(f1/3 /mw6 )2n, we may 
use (34) for getting (35). 

Consequently, the linewidth is of order /3, which is in 
contradiction with the experimental result of the existence of 
sharp transition frequencies (spectral lines), whose linewidth 
is not related with /3. This result supports the view that it 
really appears nontrivial, in the framework of a classical sto­
chastic theory such as SED, to account for sharp spectral 
lines. 

In a similar way, we obtain the absorption coefficient 
for frequencies close to 3wo (second "absorption line"): 

8rr3 
, [ , G E dE ] 

a,(w) = +--e-w Ix,l- EE-'WO 
3 G dw oJ =",/3 

, 5 2 ) = 8rr- mwoe N(w - 3wo 3 

81 (3 2fz2 3wo 

[ 
8 <5 (w - 3wo)]} xexp --- . 
3 /3 3wo 

(36) 

The maximum of this second line is again not the same as the 
one in quantum theory [Ref. 28, formula (1.17)]: 

SED 3 27 fz{3 QT 9 fz{3 
W3 = wo + , W3 =3wo+---. 

8 mw~ 4 mw~ 

Proceeding as we did for the first line, we find that the 
absorbed power for the second line la, is given by 

1
3
"'" + A W6

e2 
[ 729 ( /3fz )2] la, = a~(w)p(w) dw = --~ -- --1 .(37) 

3",,, 3mc' 512 mwo 

We then develop the same kind of argument as for Eq. 
(35), and we find again a width of order /3 for this second line, 
because the integral in (37) converges for A >3wo(f1/3 /m(6). 
Finally, we may obtain the total absorbed power la through 
order /3 2 from the contributions (35) and (37) of the first two 
absorption lines, because the contribution of the other lines 
to I a is, at least of order /3 4, due to the fact that 
IX 2n + 1 12 = 0 (y2) IX2n _ 1 12. Therefore, by adding la, and 
la" we get (up to terms of order /3 2) 

W6
e2 

[ 9 /3fz 81 (/3fz )2] la = -- 1 + --+ - - . 
3c3 4 mW6 256 mW6 

(38) 
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IV. ENERGY EMISSION AND THE PROBLEM OF 
"RADIATION BALANCE" IN SED 

Thus far we have studied the absorption of energy. 
Now, in order to see whether the radiation balance at each 
frequency is satisfied or not for the anharmonic oscillator in 
SED, we calculate the emission of energy at each frequency. 

From the total averaged emitted power, 

Ie = - (iFd ) = LX dE 21T ~)(E) ! 4e:(nliJ)4Ix" 12, (39) 
o liJ ,,0 3c 

where F" = (2e 2/3c 1 ).X" is the damping force, we may obtain 
the emitted power at a frequency liJ;;;'O as given by 

81Te
2 

1 or. [odE ] (.((())=~' I Ix"I--,~)(E) 
3c 11 0 dUJ (t)' - ('J/II 

(40) 

(see Ref. 31, Sec. 16 for the calculation of the total emitted 
power corresponding to one orbit). It should be noticed that, 
in order to get the correct result, given by (39), the halved 
sum (over positive frequencies), appearing in expressions (43), 
(44), and (46) of Ref. 31, Sec. 16, must be multiplied by 2 
instead of being divided by 2. Moreover, in Van Vleck's 
work,." the symbol liJ is used as a frequency, not as an angu­
lar frequency: 21TliJ (Van Vleck) = () (present work). 

In the same way as we did for a(liJ), it may be shown that 
only for frequencies very close to (2n + I )liJo the emission is 
not negligible. Therefore, for frequencies close to liJo (first 
"absorption line"), we have 

81T ,[ I l,dE ] I,.,(liJ) = J<U x I --, Wo(E) 
3c dliJ ,.,. ,,' 

_ 64 mliJ~e2 H .1" [I 17 A 881" 2 - - --1VliJ ~ + -~ + --~ 
27 (3 2,,£"' 4 144 

_ ~ M 2 _ ~ M .' + 578 82.:1 4 ] 

9 (3 2 (32 81 (32 
xexp [ _ ~ 8:]. (41) 

We note that there is not radiation balance at each fre­
quency; the emitted power Ie, (liJ) and the absorbed power 
la, (liJ) = a 1 (liJ),o(liJ) [see (34)] are not the same at each frequen­
cy. In actual fact,for.:1 = (liJ - liJo)/liJo = 0 (fz/3 ImliJ6), Ie (liJ) 
- la, (liJ) = 0 [(e2fz/m 2liJo)/3 ]. ' 

For the second absorption line (frequencies close to 
3liJo), we have 

I, (liJ) = 4 mliJ~ e
2 
NliJ1(liJ - 3liJo)lex {_ ~ ~(liJ - 3liJO)} 

, , 241 ¥.a 2 .1 3 P 1 (3 3 
''fJ C liJo liJo 

(42) 

and therefore the radiation balance is again not satisfied for 

liJ - 3liJo = 0 ( fz/3,), 
3liJo mliJo 

la, (liJ) - Ie, (liJ) = 2Ie, (liJ) = 0 (;::0 (3 ). 
These results show that the quartic anharmonic oscilla­

tor in the random field of SED absorbs energy at the frequen­
cies close to 3liJo, and radiates energy at the frequencies close 
to liJo. 

Following the same kind of argument developed for get­
ting a I and la, [Eqs. (35) and (37)] (the required integration 
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interval is of the same order of magnitude) we get the total 
emitted power for the two first lines: 

I = w~e2 [1 + ~ (3fz _ ~( (3fz )2] 
e, 3mc1 4 mliJ6 5 12 mliJ~ , 

Ie = W6
e2 

[ 243 ( (3fz )2]. (43) 
, 3mc1 512 mliJ6 

We recover the conservation of energy 
la, + la, = Ie, + Ie"throughorder(32, The amount ofener­
gy flowing towards the oscillator at frequencies close to 3liJo 
exactly balances that flowing away at frequencies close to liJo, 

as it should be, since the total energy balance must obviously 
be satisfied as soon as the system is in its stationary state. 

The quartic anharmonic oscillator is then not in radia­
tive equilibrium with the zero-point radiation of SED. 

Moreover, this system is in equilibrium only with the 
Rayleigh-Jeans spectrum. Using a general spectral density 
Y;, (liJ) we obtain, for frequencies close to liJo to order (3 2, 

from expressions (20), (33), and (40), 

I (liJ) - I (liJ) = ~2liJ1[lx 1

2dE w: ] 
Q. C

1 3cJ I d{j)' 0 cu' = (,) 

X [~y2(9 _ .~: (3liJ) )]. (44) 
256 .Y ;, (liJ) 

Therefore, in order to have radiation balance for this 
first line we must impose Y;,' (3liJ)1 Y w (liJ) - 9 = 0 and 
hence Y t; (liJ) = constw2

, which is the Rayleigh-Jeans law. 
In order to get this result, it is enough to assume that Y W (liJ) 
is twice continuously differentiable. Indeed, by differentiat­
ing twice the relation Y>S' (3liJ) = 9Y f, (liJ), we get 
Y~. (3liJ) = Y~, (liJ). Then, by using a sequence offrequencies 
[liJ/3 n I, with n = 1,2, ... , we get liJ = 0 as an accumulation 
point of this sequence of points for which Y~. (liJ) is constant. 
Therefore, Y~. (liJ) must be constant on a finite neighbor­
hood of liJ = 0, and then we obtain by a suitable dilation 
Y W (liJ) = constw2 for any liJ. 

Note that the expression (44) is valid for any Y;, (liJ). 
The only restriction is that Wo(E) must be intergrable. In 
order to insure this property it is sufficient that ,!/, ;, (liJ) be­
haves as a power of liJ for large frequencies, because in this 
case we have always the result given by expression (24). 

Using the Rayleigh-Jeans spectrum we may show that 
the radiation balance is always satisfied for any one-dimen­
sional periodic system. Indeed, from (7) and (8), by using 
Y;, (liJ) = CliJ2, we have GEIGEE = 2rmle2C and then from 
(27) and (40) 

Ia (liJ) - Ie(liJ) = 81T:2 liJ3 I. [IXn 12 d~ Wo(E)] , 
3c n = 0 d(tJ (/J = wi n 

( 
2 3 GE 3C ) 0 X 1TC----

2
-1 = , 

GEE 41T 

where we have used Ia(liJ) = a(liJ)p(liJ) = a(liJ) (3C 14~)liJ2. 
Therefore, the radiation balance at each frequency is 

satisfied for any system for the Rayleigh-Jeans spectrum, 
and only for it. This result is in agreement with the one ob­
tained by Boyer32 for a harmonic oscillator perturbed by a 
cubic potential (3x3. In this case, however, it could be argued 
that no strictly stationary distribution exists, since the poten-
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tial goes to - 00 when x-+ - 00: thus the particle sooner or 
later escapes to - 00, over the potential barrier of finite 
height h corresponding to the maximum of the potential 
curve which lies on the negative half of the x axis. As a conse­
quence, there is only a quasistationary probability distribu­
tion (whose lifetime becomes longer and longer when the 
cubic perturbing term /3x3 goes to zero). 

But no such objection is possible for the harmonic oscil­
lator perturbed by a quartic potential, since in that case the 
problem admits in SED a genuine stationary density, as we 
have proved in Sec. II B above. 

v. CONCLUSIONS 

We have found that the results for the anharmonic os­
cillator, concerning the mean energy and the maximum ab­
sorption frequencies, are in disagreement with the quantum 
results as soon as /3 #0. 

Moreover, independently of this disagreement with 
quantum theory, the lack of radiation balance that we have 
found in SED is a serious defect of the theory, since the ratio 
of absorption and emission coefficients would not be the 
same function of the frequency for the anharmonic and har­
monic oscillator and therefore Kirchhofrs law would be vio­
lated in SED (by contrast this law is actually satisfied in 
quantum theory33). 

T. H. Boyer (Ref. 32a, Sec. VII; Ref. 32b, Sec. VI) con­
jectures that a relativistic mechanical system should leave 
invariant the Lorentz-invariant spectrum of classical elec­
tromagnetic zero-point radiation appearing in SED. Then, 
the Rayleigh-Jeans law found here as the only equilibrium 
spectrum would be tied specifically to the nonrelativistic 
character of the systems. 

T. W. Marshall34 suggests that the mechanical system is 
in equilibrium in the zero-point field of SED, while the field 
itself is not in equilibrium. The variables describing the me­
chanical system are "fast" ones with respect to those describ­
ing the field. Then the system realizes its stationary density 
according to the nearly instantaneous value of the field. Such 
a picture is perfectly reasonable, but it does not avoid the 
difficulty concerning Kirchhofrs law. Moreover, even if the 
problems concerning the lack of radiation balance in SED 
could be avoided, we would always be faced with the more 
difficult problem posed by the well established experimental 
evidence of the sharpness of spectral lines. It really appears 
nontrivial, in the framework of a classical stochastic theory 
such as SED, to account for these very sharp spectral lines. 

These difficulties, together with the negative results for 
the hydrogen atom in SED, 10.11 make us adopt, at the pre­
sent time, a very cautions opinion concerning the prospects 
of "simple" classical stochastic models in microphysics such 
as SED. By the qualification simple, we mean specifically 
that the stochastic field acts like a "thermostat", i.e., its spec­
trum is independent of the mechanical system; but, as point­
ed out, e.g., by Van Kampen (Ref. 16, Introduction), such an 
independence property is by no means trivial. Thus, less sim­
ple theories could be considered, for which the "effective" 
spectrum of the stochastic force would be dependent on the 
mechanical system upon which it is acting. In more physical 
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terms, the reaction of the mechanical system upon the sto­
chastic medium surrounding it would not be negligible. Such 
more general theories would be more involved, but at the 
same time they could offer possibilities of explanation for a 
wider class of physical properties and behaviors. 
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We study the rotating-vibrating system, consisting of the rotating harmonic oscillator, using the 
analytic theory of continued fractions. We prove that there is a convergent continued fraction 
representation of the Green's function which is analytic in the complex coupling constant plane, 
except for a cut along the negative real axis. The perturbation series for the Green's function is 
unambiguously defined by the continued fraction but diverges on account of an essential 
singularity at the origin. An infinite but incomplete set of exact solutions for certain specific 
values of the coupling follows from the representation of the Green's function as a continued 
fraction. Finally, we use Worpitzky's theorem in continued fraction theory to show that in the 
strong coupling limit a-+O+ (a being the inverse of the coupling parameter), there exists a lower 
bound to all energy eigenvalues for a given value of I, the orbital angular momentum. 

PACS numbers: 03.65.Db, 02.30.Mv 

1. INTRODUCTION 

The rotating harmonic oscillator presents the simplest 
model of a rotating-vibrating molecule. Langerl noted that 
an exact solution for the bound state eigenvalue problem was 
not possible; he showed, however, that eigensolutions for 
which the reduced radial functions vanish both at the origin 
and at large r exist. He also obtained the result that the corre­
sponding eigenvalues differ from integers by terms at most of 
the order a Iina I, a being the inverse of the coupling param­
eter assumed to satisfy 0 < a (1. Subsequently, Froman and 
Froman2 showed that the spectrum does not contain terms 
such as allnal, whose presence would invalidate strong cou­
pling expansions, but only contains terms with integral pow­
ers of a. Using the phase integral method, they showed the 
eigenvalues tobe of the formA = v + 1(1 + l)a + ''', where v 
is a positive integer and I the orbital angular momentum 
quantum number. Recently, Flessas3 obtained one class of 
exact solutions of the problem: he suggested that there exists 
a solution of the radial equation which is analytic in the 
radial variable, provided that A = I + 1(1 ",,0). Fromanetal. 4 

have subsequently disproved this suggestion and obtained a 
sequence of exact eigenfunctions for the s-wave problem. 

In this note, we present a study of the system using the 
analytic theory of continued fractions. The theory of contin­
ued fractions has been used earlier in the solution of several 
types of quantum mechanical problems.5

-
8 In particular, the 

methods we use have been applied to the study of certain 
kinds of anharmonic oscillator systems.9

•
IO We expand the 

wave function in a power series multiplied by a suitably cho­
sen Gaussian and obtain for the coefficients of the power 
series a three term contiguous difference equation. The solu­
tion of this difference equation is written in the form of an 
infinite continued fraction. The continued fraction represen­
tation allows us to obtain the Green's function, whose poles 
are the energy eigenvalues. A suitable transformation allows 
us to write the Green's function as a Stieltjes S fraction. We 
prove that this S fraction converges and that in the complex 

a-lla plane it is analytic except for a cut along the negative 
real axis. Further, the perturbation series in a diverges, the 
divergence arising from a branch point singularity at a = O. 
An infinite but incomplete sequence of exact solutions for 
specific values of the coupling is obtained by terminating the 
continued fraction for the Green's function. These exact so­
lutions do not contain the eigenvalues A = I + 1 suggested 
by Flessas3

; in this respect our results therefore confirm 
those of Froman et al.4 Finally, we use Worpitzky's theo­
rem II in continued fraction theory to show that in the strong 
coupling limit a-+O+ there exists, for each given I, a lower 
bound to the energy eigenvalues. 

2. THE DIFFERENCE EQUATION AND THE GREEN'S 
FUNCTION 

In the notation of Ref. 1, we consider the radial Schro­
dinger equation for the reduced wave function, 

d
2
F +(A+! _ (r-If _ I(/+I))F=O. (1) 

dr a 4a2 r 

r is the (dimensionless) radial variable, A the eigenvalue, I the 
orbital quantum number, and a a coupling parameter: gen­
erally, one is interested in 0 < a( 1. We look for solutions 
which vanish at r = 0 and r = 00; thus 

F = r" exp [ - (,u/2)r - vr lx. 
With 

and 

(J = I + 1, 

f.l = lI2a, 

v = - lI2a, 

x(r) = fa/', 
o 

we obtain for the an's the difference equation 

(2) 

(3) 

(4) 
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a(n + l)(n + 21 + 2)an + I + (n +' + 1)a n 

+ (A - n - I jan _ I = O. 

Defining 

An a(n + l)(n + 21 + 2), 

Bn -(n + 1 + 1), 

Cn-(A - n -I), 

we write the solution to (5) in the form 

an 

an - 1 -AnCn+ I 
Bn + --------­

-An + I Cn + 2 

Noting from (5) that 

a l (l + 1) ~ 
a(21 + 2) 2a Ao 

, 
ao 

we have 

-~ -C I 

Ao B -A IC2 1+ 
B2 + ... 

Thus 

O=Bo+ -AcPI 

B -A IC2 1+ 
B2 + ... 

(5) 

(6) 

(7) 

(8) 

(9) 

We now apply an equivalence transformation and reduce 
this to an S fraction. We introduce a sequence of objects 
[an I such that 

so that (9) may be written as 

o = BcPo + -------
Bla l + ---­

B2a 2 + ... 

(10) 

We define the right hand side of this equation as the inverse 
of the Green's function suitably normalized. 

This is a Stieltjes fraction if 

Bnan >0. 

Iteratively one finds 

_ .!.! 22'1 - 2 F(n + 1) r (21 + 2n + 1) 
a o a T(2n + 2) T(2/) 

X( r(l) )2F(A-I-2n-1) 
F(/+n) r(A-I} 

x(r(A;/)jrC;'-n)Y, 
1 1 

a o --;; (21 + 2)(,1 -/- 1)' 
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(11) 

(12) 

(13) 

(14) 

a = a 2 - 2'1 - 2 T(2n) (r(l + n - 1))2 
2'1 0 (r(n + 1))2 r(l + 1) 

X r (A - 1 - 2n + 1) 

r(A -1- 1) 

X (r ( A ~ I _ 1 )!r ( A ~ 1 _ n + 1)). (15) 

Introducing a new set of quantities k n such that 

B2n + la2n + 1= (l/a)k2n + I' ( 16) 

we obtain for the Green's function G (a,A ) the continued frac­
tion representation 

G(a,A) = --------- (17) 

ko + ---------
k/x+ ------

where a=·I/a. 

3. ANALYTICITY OF THE GREEN'S FUNCTION: 
DIVERGENCE OF THE PERTURBATION SERIES 

The representation of the Green's function as a contin­
ued fraction in (17) enables, as in the case of the doubly an­
harmonic oscillator, the use of analytic continued fraction 
theory to study the analytic structure of the Green's function 
in the coupling constant plane. From (13), (14), (15), and (6) it 
may be seen that it is possible to choose a o such that all the 
k n (except, at best, a finite number) are positive. Further, 
using Stirling's approximation, we find that ~kn diverges. 
We thus have l2 

Theorem I: G (a,A ) considered as a function of a = l/a 
for fixed A is uniformly convergent over a finite closed do­
main of a, whose distance from the negative half of the real 
axis is positive. Its value is an analytic function of a for all a 
not on the negative half of the real axis. 

Next, we rewrite (17) in the form 

1 
~ G (a,A) = -------
a 

kl + -..,..--­
k 2a + ... 

Introducing new quantitites d n through 

d n =l/kn _ I k n, 

we write (17) in the form 

koG(a,A) = ------­
dl(-a) 1 - ------'-'----'---

1 _ d2( - a} 
1 - ••• 

( 18) 

( 19) 

(20) 

This is an alternative form of the Stieltjes S fraction. From 
this representation it follows that this S fraction can be ex­
panded in a power series in ( - a) and the series is unambigu­
ously defined by the S fraction. J3 We write the power series 
as 

(21 ) 
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The coefficients en are all positive. This series may be re­
garded as the perturbation expansion of G (a,A ) in powers of 
a. To determine the convergence ofthis series, we note that 
d n = 1/kn _ l k n -oo as n-oo. Then from the theorem of 
Stieltjes 14 we have 

Theorem II: The perturbation series for G (a,A ) in pow­
ers of a is divergent, arising from an essential singularity at 
a=O. 

4. EXACT SOLUTIONS: CONSTRAINTS ON THE 
COUPLING 

An infinite sequence of exact energy eigenvalues for 
particular values of the coupling may be obtained from the 
continued fraction representation of the Green's function. 
From (7) we find that if en = 0, en _ 1#0, n = N (say), then 
aN = O. However, the difference equation (5) shows that 
en = an = Oforn = NrequiresthataN + I = O. Thus, all the 
an ,n';PN vanish and the wavefunction reduces to a polyno­
mial (weighted with the usual Gaussian). These are the exact 
polynomial solutions of the problem: the corresponding en­
ergy eigenvalues are given by 

A=n+l. (22) 

It must be emphasized that each of these exact energy eigen­
values corresponds to a specific value of the coupling a. This 
is most easily seen from (9). If eN = 0, i.e., A = N + I, we 
must ensure that 

(23) 

Since A has been constrained to a specific value (viz. N + 1 ) 
this is an equation in the coupling a. Thus, e.g., A = 1 + 2 is 
an exact eigenvalue only for a = 1/2(/ + 2); A = I + 3 re­
quires a = (/ + 2)(1 + 3)12(41 + 9). The solution A = 1 + I 
must be excluded since from (6) we see that Bo = ° cannot be 
satisfied. We note that this set of exact solutions is incom­
plete: at each constrained value of a, there exists an infinity 
of energy eigenvalues of which only one (for each value of f) 
appears in (22). We note that the exact solutions obtained 
here specifically exclude the setA = I + 1 suggested by Fles­
sas\ further, the exact eigenvalues occur only for specific 
values of a and not for all a > 0, as Flessas suggests. These 
results, therefore, confirm the remarks of Froman et al.4 re­
garding the validity of Flessas' results. 

5. LOWER BOUND ON THE EIGENVALUES IN THE 
STRONG COUPLING LIMIT 

We next show that in the strong coupling limit a_O+ 
the eigenvalues A (a,/) are bounded from below. While a low­
er bound is to be expected on intuitive grounds and is reflect­
ed in the approximate results of Froman and Froman,2 we 
use the theory of continued fractions to obtain a rigorous 
lower bound. 

Consider the difference equation (5) in the form 
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a(n + 1)(21 + n + 2) a + a + (A - n -I) an _ I = 0, 
(n + 1+ 1) n+ I n (n + / + I) 

i.e., 

with 

Fn =a(n + l)(n + 21 + 2)1(n + I + I), 
Hn=(n + I-A )I(n + I + I). 

Then 

G(a,A) = -----­
FoRI 1 + -~.-!...-

1 + FIH2 
1 + ... 

Define 

bn+ 2 =Fn H n+ I' n = 0,1,2,.··. 

Then 

G(a,A) = ------
1 + __ b..:..2 __ 

1+_b_3 _ 

I + ... 

(24) 

(25) 

(26) 

(27) 

(28) 

A continued fraction of the form (28) with partial quotients 
of the form bJI satisfies Worpitzky's theorem, which is as 
follows. 

Let b2,b3, .. • be functions of any variable over a domain 
D in which 

Ibp+II<A, p=I,2,. ... (29) 

Then the following statements hold. 
(a) The continued fraction (28) converges uniformly 

over D. 

(b) The values of the continued fraction and its approxi­
mants are in the circular domain 

Iz -11 <~. (30) 

(c) The constant ~ is the "best" upper bound on Ibn + I I 
which may be used in (29), and (30) is the best domain of 
values of the approximants. 
Now, from (27) and (25), 

bp + I = Fp_IHp 

= apt p + 21 + 1)( P + I - A ) 
( p + 1)( P + I + 1) 

alp + 1)(2p + 21 + 2)(p + I-A) 
< 

(p+/)(p+l+ 1) 
=2a(p+f-A). (31) 

Defining a=(f - A ), we have 

bp+ 1 <2a(p + a). 

Assume that a > 0, i.e., all the eigenvalues A are bounded 
above by f. Then, since a > 0, (29) requires 

2a(p +a)<l, 
I.e., 

a < 1/8(p + a). 

Since p = 1,2 .... and a > 0, a sufficient condition for Wor-
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pitzky's theorem to hold is that 

(32) 

Worpitzky's theorem now ensures that G (a,A ) converges for 
all a,A such that (32) holds. Since the eigenvalues are poles of 
G (a,A ) and since fora_O+G (a,A ) is convergent for aliA < I, 
we therefore conclude that all the eigenvalues A (a,/) are 
bounded below by I as a-O+. Indeed, (30) enables us to give 
an upper bound for G (a,A ) in the domain a < A,A < I: 

G(a,A) <2. (33) 

Thus, the orbital angular momentum I itself constitutes a 
lower bound for all eigenvalues for a given I in the strong 
coupling limit. 
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Quantum mechanical spaces associated with geometries based on exceptional groups are of 
interest as models for internal (quark) symmetries. Using the concept of a Jordan pair, two copies 
of complex 3 X 3 octonionic Jordan algebras (~) are shown to define a quantum mechanics over 
the complex octonionic plane having f5' 6 ® ~(1) as automorphism group. The unusual features of 
this new quantal structure (neither a projective geometry, nor a lattice) are discussed. 

PACS numbers: 03.65.Fd, 11.30.Ly 

1. INTRODUCTION AND SUMMARY 

The unusual nature of the hypothetical quark degrees of 
freedom has been a strong incentive for the construction of 
new quantum mechanical models in which these strange 
properties are to appear naturally, and not as ad hoc arti­
facts. It has been stressed, both by Jordan i and more recently 
by Dirac,2 that the most fruitful way to attempt any general­
ization of the standard Hilbert space structure of quantum 
mechanics lies in changing the basic algebraic structures; in 
particular, Dirac expressed the view that nonassociative al­
gebraic systems still hold the most promise. Jordan formu­
lated quantum mechanics3 in terms of commutative, but not 
associative (finite-dimensional) algebras of observables (the 
so-called Jordan algebras); Jordan, von Neumann, and 
Wigner4 showed that this approach is equivalent to (finite­
dimensional) standard quantum mechanics with the single 
exception of vH'~, the algebra of 3 X 3 Hermitian matrices 
over octonions. It is a remarkable fact, emphasized by 
Faulkner and Ferrar,5 that all notions of exceptionality in 
algebra and in geometry are manifestations of one underlying 
structure, that is, nonclassical Lie algebras; nonassociative 
alternative algebras; nonspecial Jordan algebras; and non­
deSarguesian projective planes; are all related, in one way or 
another, to the octonions (Cayley numbers). 

Current interest in the use of octonionic structures was 
initiated by Giirsey,6 who noted that specializing one of the 
seven nonscalar Cayley units (to play the role of the imagi­
nary unit) automatically achieves a rationale for SU(3)"oior. 
In particular, the five exceptional Lie groups exhibit a color­
flavor structure: 

:12:SU(3)", Y4:SU(3)XSU(3)", ~7:SU(6)XSU(3)", 

~ 6: SU(3)XSU(3)XSU(3)", ~ 8: ~ 6XSU(3)C, 

Giirsey emphasizes that non associativity may be con­
nected with the problem of confinement. The fact that the 
distance function for non-deSarguesian geometries contains 
a part directly due to nonassociativity is itself suggestive. 
One merit of this approach is that it leads to a small number 
of possible models, which can be tested against known re­
sults. In particular, :12 and Y 4 are eliminated (flavor group 

al Supported in part by the Department of Energy under Contract No. DE­
AC03-76SFOO5l5, and partly by the NSF, Contract No. PHY8105333. 

blFellow of the Fondazioni A. Della Riccia-Firenze (Italia). 
CiOn leave from Duke University, Durham, N. C. 27706. 

too small); ~ 6 seems viable, but ~ 7 seems to be ruled out.7 

The exceptional quantum mechanics, vH'~ , was reinves­
tigated by Giinaydin, Piron, and Ruegg8 and shown to ac­
cord with the standard propositional formulation, with a 
unique probability function for the Moufang (non-deSargue­
sian) plane. The automorphism group of this structure is Y 4' 

and, as mentioned, the color-flavor structure is too small to 
be acceptable. 

The purpose of the present paper is to construct a quan­
tum mechanics for the complexified octonionic plane, 
which, as we show, has the automorphism group ~ 6 X U( 1), 
a group large enough to accommodate-as finite-dimension­
al quantum-mechanical charge spaces-a color-flavor struc­
ture which is not ruled out by current experimental evidence. 
The construction makes essential use of recent technical ad­
vances in Jordan algebras, which we now sketch. 

The Jordan algebraic approach attempted to capture 
the essence of Hermitian matrix algebra (which character­
izes quantum mechanics) by eliminating all reference to the 
underlying wavefunction concept, by focusing attention 
only on the algebraic properties of observables, and by elimi­
nating the explicit use of the imaginary unit i. (This latter via 
the "formally real axiom": a2 + b 2 = ~ = b = 0.) For 
Hermitian matrices the operations of multiplication by real 
scalars, X---+£lX; addition, (x + y); and formation of powers, 
x n

, were all taken over, but the only allowed product is the 
symmetric one: xy + yx (since the lack of i forbids 
commutators). 

The axioms for a Jordan algebra were taken to be (1) 
xOy yOx (commutativity) and (2) (x20y)Ox = x 20( yox) (Jor­
dan axiom; nonassociativity). (The role of this second axiom 
is exactly the same as the Jacobi axiom in Lie algebras; it 
ensures that one has an integration process-the Jordan ana­
log to the Baker-Campbell-Hausdorff identity.) 

It is remarkable that this technique-which, by con­
trast to the Dirac q-number approach, exchanges commuta­
tivity for noncommutativity and nonassociativity for asso­
ciativity-is essentially identical to standard quantum 
mechanics. The one exception, vH'~ , is the first known exam­
ple of a quantum mechanics for which there is no Hilbert 
space, and no wavefunction. 

Although the Jordan program began in physics, most of 
the interest, and developments, in Jordan algebras have been 
in mathematics; progress here has led to considerable change 
in the basic viewpoints. We summarize two developments of 
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this type: 
(a) the concept of a quadratic Jordan algebra, and the 

related concept of inner ideals; and 
(b) the concept of structural group and Jordan pairs. 
Consider the concept of quadratic Jordan algebra. The 

idea here is to model everything on the product Ux (y) 
= xyx-which is quadratic in x-rather than on the linear 

Jordan product xoy = !(xy + yx). The axioms for quadratic 
Jordan algebras were given by McCrimmon. 9 (These axioms 
are given in Sec. 2). These axioms appear complicated, and it 
is not clear that they really constitute a step forward! We can 
indicate that it is by noting these points: 

(1) Nothing is lost-quadratic Jordan algebras are cate­
gorically equivalent to linear Jordan algebras whenever the 
latter is defined (i.e., characteristic not 2). 

(2) The quadratic algebra allows composition with the 
"generalized determinant," the norm form N (y). Thus, 
N (Ux (y)) = (N (X))2 N (y). There is nothing analogous to this 
in the linear case. 

(3) There is a structure theory for the quadratic algebras 
which is closely analogous to that for associative algebras. 10 

Let us explain the significance of this last point. For a 
physicist the Jordan aproach is unhandy largely because it 
banishes the concept of wave function (more precisely, bra 
and ket vectors) with only the density matrix remaining. In 
mathematical language what has happened is this: the con­
cept of a ket vector is the concept of a (left) ideal, a subset N of 
the associative algebra A such that n·A eN if n eN. In a 
nonassociative algebra there is no such concept. What re­
places it comes from the quadratic algebra: the concept of an 
inner ideal. An inner ideal M is a subset of a quadratic alge­
bra J such that Ux (J) eM if x eM. The importance of this 
concept can be seen in this way: it is a fundamental result 
that the projective geometry of the space of n-tuples over a 
field cP is isomorphic to the geometry of left ideals in the 
(associative) algebra of n X n matrices over CP; for nonasso­
ciative algebras, inner ideals play an equivalent role in the 
construction of geometries. 5 It is our belief (noting the close 
relationship between geometries and quantum mechanics) 
that the concepts of quadratic Jordan algebras and inner 
ideals will be useful in physics. 

Let us tum to the second conceptual development: the 
concept of a structural group (Koecher, Ref. 11) and Jordan 
pairs (Loos, Ref. 12). The automorphisms of a given physical 
structure are a well-known approach to the intrinsic proper­
ties of the structure. For an algebra, one studies the automor­
phisms which preserve the algebraic laws; accordingly, such 
transformations always map the unit element into itself. 

How could one change the unit element? If u has an 
inverse, let us replace the product xy in an associative alge­
bra by xy+-+xu-1y. The new unit element and its inverse are 
easily computed: l(u~ = u, x - l(u~ = ux-1u. 

For associative algebras this new algebra A (u~ is, in fact, 
isomorphic to A but, remarkably, for non associative alge­
bras this shift of the unit can produce a different algebra. 
Such a new algebra is called an isotope, J(u~, of the original 
algebra 1. 

The desire to study not only the Jordan algebra Jbut all 
its isotopes as a single entity leads to the two concepts of 

1328 J. Math. Phys., Vol. 23, No.7, July 1982 

structural group and of Jordan pair. The structural group, 
Str(J), is the group of isomorphic mappings of a Jordan alge-

bra J and its isotopes onto itself: J(u~-.J(T"~. The automor-
T 

phism group Aut(J) is the subset of such mappings fixing the 
unit element. 

The construction of quantum mechanics over a com­
plex octonionic plane was begun by Giirsey, 13,14 but without 
using the concepts of inner ideals or Jordan pairs. (Appendix 
D discusses this work.) Let us indicate, briefly, how these 
concepts afford a more natural approach. 

The work of Jordan, von Neumann, and Wigner really 
was categoric; within their axioms .~~ is the only new quan­
tum mechanics. Thus to go further one must drop one (or 
more) of their axioms: in the present case we drop the axiom 
of formal reality. The price one pays for this (in a direct 
approach, as in Ref. 13) is that the elements of the algebra 
become complex octonionic 3 X 3 matrices, which are Her­
mitian under octonionic conjugation, but not under complex 
conjugation. This destroys at once the raison d 'etre for the 
Jordan approach, that is, the study of algebras of 
observables. 

The use of Jordan pairs nicely remedies this difficulty: 
the pair consists of two complex..ff~ structures, and the con­
cept of observable becomes the concept of Hermitian pairs. 

Similarly the use of Jordan pairs allows one to take over 
the language of inner ideals and, equally importantly, the 
concept of a Peirce decomposition. It is through this latter 
concept (discussed in Sec. 4) that we are able to achieve, in a 
natural way, an orthocomplementation for the complex oc­
tonionic plane. 

The use of Jordan pairs has several other intuitive ad­
vantages. Let us mention that the pair concept makes intu­
itively clear the structure of the projectors, which we con­
struct for both points and lines. More importantly, the pair 
concept makes it clear why both nilpotents as well as idempo­
tents of complex..ff~ are to be associated to points (both lead 
to idempotents of the pair). The association of nilpotents to 
quantal propositions is a new feature of the present 
structure. 

As is to be expected, there are some unusual features of 
the quantum mechanics constructed for the complex octon­
ionic plane. All these new features are, in one way or an­
other, related to the existence of point spaces of dimension 
> 1, (in Sec. 5). There is a new relation in the geometry (see 
Sec. 4), called "connectedness" (by Springer, Ref. 15). The 
resulting geometry is no longer projective: two lines may 
intersect in more than one point. (If so, the two or more 
points of the intersection are then "connected" points.) 

As a result of this new feature, the quantal structure 
must differ from the standard (propositional calculus) for­
mulation: the only axiom which is dropped is the (lattice) 
axiom asserting the existence of a greatest lower bound for 
any two propositions. This axiom, as is well-known, is the 
axiom least justified experimentally, since it is nonconstruc­
tive. It is the merit of the present construction that it pro­
vides a model in which this axiom is denied in a natural way. 

The lack of a lattice structure affects also the definition 
of "state," forcing us to define a "measure" with unusual 
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properties. Let us note, however, that this measure coincides 
with the unique probability function (defined by Giinaydin, 
Piron, and Ruegg, Ref. 8, on the Moufang plane) when re­
stricted to the real octonionic case. Moreover, when restrict­
ed to the purely complex case, the measure coincides with 
the usual modulus (squared) of complex three-dimensional 
Hilbert space quantum mechanics. [This is to be distin­
guished from the specialization of the Moufang plane itself 
(taking, say, e7 as the complex unit) since, among other 
things, the pair structure is retained.] 

The automorphism group of this quantum mechanics is 
'll6,O ® OU (1), which plays a role analogous to that of.7 4,0 for 
the Moufang plane (see Sec. 2 for notation on groups). The 
automorphism group 'll6,o ® U( I) preserves the trace 
tr(x,x*), is transitive on points, and transitive on triples of 
orthogonal points. The group action can, however, only par­
tially diagonalize the observables, leading to an unusual 
spectral theory. We show (in Appendix B) that the isotropy 
group of a point is SOt 10) ® V( 1), so that this complex octon­
ionic plane is the homogeneous space 'll6,o/SO(1O) ® V(I). 

One of the advantages of the complexification is that we 
now recover the standard Wigner relation in which infinites­
imal symmetry generators are directly related to observa­
bles. (This is lost in --ff~ .) Similarly, time reversal can now be 
implemented. 

All of the unusual features of the present structure have 
closely analogous features in the theory of reducible lattices. 
In the present model, for example, the superposition princi­
ple is not unrestrictedly valid. This is true also for reducible 
lattices, where there are superselection rules, but unlike re­
ducible lattices (where there may be no superposition for two 
states) in our case, the failure (for two connected ponts) oc­
curs because there are too many states (superposition is not 
uniquely defined). If one views reducible lattices as a struc­
ture between classical mechanics and standard quantum me­
chanics, in some sense the present structure lies on the oppo­
site side of quantum mechanics. 

It would be an interesting problem, we feel, to find some 
kind of physical understanding of the role of the connected 
points which are responsible for all the unusual features of 
this quantum mechanics. 

2. THE MATHEMATICAL FRAMEWORK 

We introduce here briefly the concepts which form the 
background needed for the understanding of our construc­
tion. (We assume the reader to be familiar with the theory of 
Lie groups.) Let us refer to the following review articles on 
the more recent developments in Jordan algebras: Refs. 16-
19. 

The first important step in the theory came with the 
definition of quadratic Jordan algebras. A quadratic9 ,17 Jor­
dan algebra J is based on a quadratic map U yielding Ux Y 
quadratic in x and linear in y satisfying: 

(Q1) UI =Id, 

(Q2) UxVy,x=VX,yUX' 

(Q3) UU,y = UxUyUX' 

where v.", y (z) = (Ux + z - Ux - Uz )( y) and I is the unit in J. 
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In the associative case (Ux Y = xyx) the theories of qua­
dratic and linear Jordan algebras are equivalent (ifthe char­
acteristic of the field is different from 2), but the theory of 
quadratic Jordan algebras leads naturally to the definition of 
new objects, of which the best example is the definition of 
inner ideal. 19 An inner ideal f!jj is a subspace of J closed 
under the map U: 

u,qjJJC f!jj. 

This new concept is very useful in the definition of geome­
tries which can be entirely based on inner ideals.20 Once the 
geometrical objects are identified with inner ideals the inci­
dence relation is automatically given by set containment. 
Actually the geometrical objects are better identified with 
the principal inner ideals, that is, the inner ideals f!jj generat­
ed by a single element b in J: 

UbJ = f!jj. 

The principal inner ideal plays the same role, in quadratic 
Jordan algebra, as that of the (one-sided) ideal in the associ­
ative case. (We have noted above that one-sided ideals are 
just the bras (or kets) in the standard theory of quantum 
mechanics.) Another important property which arises natu­
rally in the quadratic formulation of Jordan algebra is the 
composition property with respect to the generic 
determinane9 

N{Ux(Y)) = (N(xWN(y). 

This has no analog in the linear case. 
A further important concept is the definition of isotope. 

If v is an invertible element of J then we can define U~) 
= Ux Uv for every x in J. The algebra J with quadratic map 
U (v) is a quadratic Jordan algebra with unit V-I, called the v­
isotope J (v) of J. Two algebras are called isotopic if there exist 
an isomorphism between one of them and an isotope of the 
other. Because two isotopic Jordan algebras need not be iso­
morphic, isotopism is more general than isomorphism, and 
one is led to the concept of structural group, Str(J), the group 
of isomorphisms of J with its isotopes. The automorphism 
group of J is therefore the subgroup of Str J preserving the 
unit. Many properties ofa Jordan algebra can be found most 
easily by working in a particular isotope, but at the same 
time there are properties which may hold only up to isotopy. 
The concept of Jordan pair was introduced to define a larger 
structure which included a Jordan algebra along with all of 
its isotopes. 

Before defining the Jordan pair let us define the prior 
concept of Jordan triples. A Jordan triple is a quadratic Jor­
dan algebra without the unit element. The axioms are 

(JT1) 

(JT2) 

VX,y Ux = Ux Vy,x, 

VUxy.y = VX,uyx' 

(JT3) U U,y = Ux Uy Ux' 

[Just as Jordan algebras may be considered as (a generaliza­
tion of) a way to multiply symmetric matrices, so may the 
Jordan triple structure be viewed as (a generalization of) a 
way to multiply rectangular matrices with Ux y = xylx, 
where t indicates transposition.] 

A Jordan pair V = (V +, V -) is a pair of spaces which 
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act on each other as a Jordan triple. The axioms are 

(JP!) V,,+,y- U,,+ = U,,+ Vy-,x+' 

(JP2) Vux.y-,y- = Vx+,uy_x+, 

(JP3) Uux• y- = Ux+ Uy- U,,+, 

the same holding with the signs interchanged. For example, 
we can form a Jordan pair by taking V + as the set of matrices 
m Xn, V- as the set of matrices n Xm and U" y = xyx. We 
can also get a Jordan pair by doubling a Jordan algebra. That 
is, we can take V + = V - = J and the same quadratic map U 
defined on J. 

A homomorphism between two Jordan pairs V, W is a 
pairoflinear maps h = (h+,h_), hu: VU_Wu, 0' = ± such 
that hu(U"oY - ") = Uho"oih _ uY - "). 

If J is a Jordan algebra and V = (J,J) is the Jordan pair 
obtained by doubling J, then there exists a one-to-one corre­
spondence between the structural group of J, Str J, and the 
automorphism group of V, Aut( V). If geStr J, then associat­
ed to it is the element (g, U g([)lg) in Aut( V). (Thus, as noted, a 
Jordan pair includes J and its isotopes.) 

In a Jordan pair it is possible to define idempotents and 
inner ideals. The idempotents of V = (J,J) include the nilpo­
tents of J (a nilpotent of Jbecomes an idempotent in a suit­
able isotope) and it is possible to define the Peirce decompo­
sition 12 with respect to an idempotent of Vin a way similar to 
that of the Jordan case. It follows that nilpotents and idem­
potents of J are treated in a uniform way in the Jordan pair 
(J,J). Inner ideals can also be defined and related to the 
Peirce decomposition. (We shall define and use these con­
cepts in the next sections.) 

Jordan pairs are strictly related to three-graded Lie al­
gebras. Any three-graded Lie algebra L = L 1 Ell Lo ® L _ I 
([Lo LJCL i + j ) can be obtained from a Jordan pairl9 and, 
conversely, a Jordan pair can be obtained from L by setting 

LI = V+, L_I = V-, V".,y-z+ = [[x+,y-],z+]. 

The map U is then obtained by 

Ux+ y- = !Vx+,y- x+. 

We shall examine in the sequel two different examples 
of Jordan pairs, The first-a didactical example to give the 
physicist reader some familiarity (and confidence) in the Jor­
dan pair approach-is obtained from the three-grading of 
the complex Lie algebra A2 • We shall show that it is pairing 
of a triple system, and associated with 2 X 1 and 1 X 2 rectan­
gular matrices. 

The second example-the principal object of the pa­
per-is obtained from the three-grading of the (complex) Lie 
algebra E 7 , and is the pairing of a complex vU~. The three­
grading of E7 coincides with the Tits-Koecher construction 
of the superstructural algebra2l

,22: 

K = J + Str / (J) + J., (133 = 27 + 79 + 27) 

for the case in which J is a complex vH'~, a 27 -dimensional 
representation of the exceptional Lie group ~ 6; J. is the 
conjugate representation of ~ 6; and Str / (J) is the complex 
Lie algebra of the structural group of J, E6 ® C. From the 
discussion above, ~ 6 ® C is therefore isomorphic to the auto­
morphism group of the Jordan pair (J,J). We note that ~ 6 
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defined as the group preserving the generic determinant19 of 
J; note also, for completeness, that the automorphism group 
of (complex) J is the exceptional Lie group Y 4' generated by 
the (complex) Lie algebra F4 • 

Remark on notation: We shall use in the sequel the 
Freudenthal notation23 for the real forms ofthe Lie algebra 
H of type G2, F4 , E6 , E 7• When no further index, other than 
the one specifying the rank of the group is written for H, it is 
meant that H is complex. The compact real form of His 
denoted by H,.o (Le., EM' F4,o,"')' The groupH"o has a sig­
nature (the Cartan index) equal to minus the number of gen­
erators of H. For the noncompact real forms the signature 
must be specified (say, in Freudenthal'S notation) to be 
meaningful. 

In the sequel the Lie group associated with a certain Lie 
algebra will be denoted by the same, but script, letter. 

3. AN INTRUCTIVE EXAMPLE FOR THE JORDAN PAIR 
STRUCTURE 

As an example of a three-graded Lie algebra yielding a 
Jordan pair structure, we consider the (complex) Lie algebra 
A 2• We want to build a geometric structure on the generated 
pair and give to it a quantum mechanical meaning. We shall 
proceed along exactly the same lines we shall follow in the 
construction of a quantum mechanics for the Jordan pair 
(J,J). 

Consider then the Lie algebra of A 2• 

HZ 

ecz 

This is a three-graded Lie algebra with the 
identifications 

LI = subalgebra generated by EI,E_2' 

L _ I = subalgebra generated by E _ I,E2, 

Lo = subalgebra generated by E ± 3,H.,H2 • 

We want to show that (L t,L _ tl is indeed a Jordan pair. Let us 
calculate UxY = U[x,y],x], where x = AIEl + A2E_ 2; 

Y = f-L IE -I + 1-'2E2' 

One finds 

UxY = i(A iI-'1[[E .. E_ 1],E I1 +A ~1-'2[[E_2,E2],E_2]) 

+ AIA21-'1 [[EI,E_ I ],E_ 21 + A:0-11-'2[ [E_2,E2],E.] 

+ AIA21-'2[ [EI,E21E_21 + AIA21-'1 [[E_2,E_1 LEI1· 

Recall that (with conventional normalization) these double 
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commutators are, in the order in which they occur above, 

j E ,;! E_ 2;! E_ 2;! E ,;! E ,; and i E_ 2• Thus (after some 

algebra), 

UxY = t(,.1" #1 + ,.1, 2 #2)(,.1"E, + ,.1, 2E_ 2) = XClyClx = (tr xy)x, 

where 

x Cl = ,.1,a1vo.ya =#aIVti 
(with a = 1,2) are the "components" of x,y. 
Linearizing this expression we get 

Vx.yz =(Ux+ z - Ux - UzlY 
= (XCl + ~lYa(x + z) - XayClx _ ~yClz 

= XayClz + ~yax. 
Remark: Note that these forms for Ux and Vx •y are the 

same as one would get considering the pair obtained by dou­
bling the triple system of rectangular matrices 1 X 2, 2 X 1. It 
is thus obvious that ( V + , V -) is the pairing of a Jordan triple 
system. 

It is easy to check that the Jordan pair axioms JP1-JP3 
are satisfied. 

To have a concrete example of the transformation Ux 

consider the three-dimensional representation of A 2. One 
finds 

x = (~ ~ ::), y = (~ ~ 0
00
). 

o 0 a ~l y2 

It is easily verified that mX,y],x] (=UxY) 
= xyx = (Xlyl + x 2y2)x = (tr xy)x. 

We want now to give a quantum mechanical meaning to 
the Jordan pair ( V + , V - )== v. To do so, consider first the 
idempotents of V. They are given by the conditions UxY = x, 
Uyx = y with XE V + ,yE V - . Since we have determined that 
UxY = tr(xy)x, and Uyx = tr(xylY, we find that the idempo­
tents of (V + ,V -) are just the elements (x,y) such that 
tr(xy) = 1. 

To interpret the idempotents as quantal objects we im­
pose the normalization condition 

tr(xx"') = tr(yy"') = 1, 

where the asterisk denotes complex conjugation. 
The interpretation of these idempotents is immediate if 

we think of x and y as two-dimensional complex vectors, one 
in the dual space of the other. Then tr(xy) is just the scalar 
product of x and y"'. The normalization condition implies 
I tr(xy) I .;;; 1 for any two vectors in (:2, with the equality hold­
ing if and only if x = eiey"'. In particular if tr(xy) = 1 it fol­
lows thaty = x"'. The objects: (i) idempotent, normalized 
pair (x,y) and (ii) the projector la) {al of ordinary quantum 
mechanics, are thus all analogous. 

In order to define the transition probability let us define 
the mapping Q: V~End(V) as 

Q(X,J'.) (X2,h) = (Ux• Uy,X2,Uy, Ux ,Y2)' 

and introduce the notation P =(x,y) if (x,y) is a normalized 
idempotent. Call P orthogonal to P' (denoted by PI P') if 

tr(QpP ') = o. 
We are now in a position to define the states of the 
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system. The state a p associated to the idempotent P = (x,y) is 
defined as the probability function 

ap(P') = tr QpP', 

where P' = (x' ,y') is another normalized idempotent. 

We now verify that ap is a state, that is 

(1) O.;;;ap (P').;;;l, 

(2) ap(P) = 1, 

(3) apW 1uP2 ) = apWI) + a p(P2 ) if PII P2• 

Proof (1) trW" Uyx', Uy UxY') 
= tr(x'y)tr(xy') = yClx'axlYP = xCl"'x'a;xPx'P '" = zz'" >0, 
wherez=xCl"'x'ClE(:. The fact that ap(P').;;; I follows from the 
interpretation of tr(xy) as the scalar product of normalized 
vectors. 

(2) tr( u" UyX,Uy UxY) = tr(xy) = 1. 

(3) We are obviously considering a "projective" com­
plex line, hence the union of two orthogonal points must be 
defined as the line itself. So ap(P1uP2) = 1. On the rhs of 
condition (3) apWI) = Itr y 1xl 2 and ap(P2) = Itr yzXl2; hence 
we have the sum of the squared moduli of the components of 
x, which is (by assumption) equal to 1. 0 

Consider now the set of transformations in:? 0' the Lie 
group corresponding to the Lie algebra L o, which maps 
points into points. Notice first that.!£'o is isomorphic to 
GL(2,q and that for g + in .!£' 0' go is given by the condition 

trIg + (x),g _ (y)) = tr(x,y). 

Interpreting tr(x,y) as the scalar product in (:2 of x withy* it 
is easy to check that 

g_ = (gl+ )-1, 

where t indicates the transpose. 
In order to have a mappingg from points into points we 

must have 

g:(x,x"')~(g + (x),(g +(x))*)=(g + (x),g _(x"')). 

We thus get the condition 

g_(x"') = (g+(x))"', 

that is gt+ = g -;. I where t indicates the transposed conju­
gate. We have therefore proven that the subgroup of the au­
tomorphism group of the Jordan pair, mapping points into 
points is U(2). The action of U(2) on the points is obviously 
transitive. 

The observables will then be the (Hermitian) generators 
of U(2), i.e., they can be represented by the linear combina­
tions of the Pauli matrices and the identity matrix. The ac­
tion of an observable H on the idempotent (and normalized) 
elements of V will be 

H (x,y) = (Hx,Hy) 

with the trace tr(x,Hy) = tr(Hx,y) easily interpretable as the 
expectation of H in the "state" (x,y). 

This example is, of course, much too simple to be of 
intrinsic interest, but it does provide a useful guide to the 
manipulations which follow for which there is no longer any 
possible underlying associative structure. 
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4. THE GEOMETRY OF THE COMPLEX OCTONIONIC 
PLANE 
4.1. Some definitions and notations 

We consider the Jordan Pair obtained by doubling the 
Jordan algebra J of the 3 X 3 Hermitian matrices over the 
complex octonions. The Hermiticity is considered only with 
respect to the octonionic conjugation and the Jordan pro­
duct is the symmetrized product 

x·y = !(xy + yx) for X,YE J (1.1) 

and xy the ordinary matrix product of x and y. The quadratic 
and trilinear operators defining the pair structure are 

(1.2) 

(1.3) 

where (7 = ± distinguishes the two copies of J. In some 
cases we use the notation V = (V + , V -) for the pair (J, J ). 

We have, furthermore, the following definitions and 
notations: 

tr(x,y) = tr(x·y), 

x# = x 2 - x tr(x) - ~I(tr(x2) - (tr xn 

x Xy = (x + y)# - x# - y# 

= 2x.y - x tr( y) - y tr(x) 

- I(tr(x.y) - tr(x)tr( y)), 

(1.4) 

(1.5) 

(1.6) 

where I is the identity in J. 
The following identities hold24 in J: 

x 3 
- tr(x)x2 + Q (x)x - N(x)I = 0, (1.7) 

tr(x),Q (x), N (x) are complex numbers. If x is in the form 

(

a. a b ) . _ a,EC 1= 1,2,3, 
x = a a 2 c 

b C a
3

' a,b,c octonions, 
(1.8) 

where the bar is the octonionic conjugation, 

tr(x) = a. + a 2 + a 3 , (1.9) 

Q(x) = a.a2 + a 2a 3 + a 3a. - n(a) - n(b) - n(c) 

= H(tr(x)f - tr(x2)], (1.10) 

N(x) = a.a2a 3 - a.n(c) - a2n(b) - a 3n(a) + t(abc) 

= Wtr(xW - 3 tr(x)tr(x2) + 2 tr(x3
)], (1.11) 

where n(a) = aa is the norm of the octonion a and 
t (a) = a + a is its trace. 

We shall make use of the following identities25 of J: 

x## = N(x)x, (1.12) 

I# = I, (1.13) 

I Xy = tr(y)I - y, (1.14) 

(UxY)# = Ux#Y#' (1.15) 

N(x#) = N(X)2, (1.16) 

tr(x,y) = tr(x)tr(y) - tr(xXy), (1.17) 

tr(xxy,z) = tr(x,yXz), (1.18) 

x#X(xXy) = N(xlY + tr(x#,y)x, (1.19) 

x# xy# + (xxy)# = tr(y#,x)x + tr(x#,ylY. (1.20) 

The quadratic and trilinear operators (1.2) and (1.3) satisfy 
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the following properties, which define the Jordan Pair 
structure: 

(1.21) 

Vu -a -a = V U a, (1.22) 
XO y,y x, y _ (f X 

Uu[y a = UXaUy aUxa ' (1.23) 

We have, moreover, the following identities· 8
: 

UxY = 2(x.y).x - x 2.y, (1.24) 

! Vx.yz = (x·y).z + (z.y).x - (x·z).y. (1.25) 

Whenever it will not generate confusion we shall drop the 
symbol (7 = ±. 

Throughout this section the asterisk will denote the 
complex conjugation of a matrix, as well as a number. We 
shall call rank 1 element any element x of J such thatx# = 0. 

4.2. The idempotents of V 

An element (x,y) of V = (J, J) is an idempotent if 

(2.1) 

We can classify the idempotents of Vby considering the first 
element, x, of the pair; we may have one of the following 
cases: 

(i) x# = 0, 

(ii) x##O, N(x) = 0, 

(iii) N(x)#O. (2.2) 

In case (i) it follows from (1.16) that N (x) = 0, which shows 
that (2.2) covers all the possible cases. It is a well-known 
result26 that in case (i) we can have 

either (i') x 2 = AX, A #0, or equivalently; 

x = AU for u a primitive idempotent of J: 

u2 = u, tr u = 1. (2.3) 

or (ii') x 2 = 0. 

For case (iii) it is equivalent to say that x is invertible.25 We 
have the following proposition: 

Proposition 2.1: Let (x,y) be an idempotent of V, then 
only the three following cases may occur: 

(i) x# = 0, y# = 0, tr(x,y) = 1; 

(ii) x# #0, N(x) = 0, 

y##O, N(y) = 0, tr(x,y) = 2; 

(iii) N(x)#O, N(y)#O, tr(x,y) = 3. (2.4) 

To prove this proposition we need the following results: 
Proposition 2.2: If (x,y) is an idempotent and x# = 0, 

then y# = ° and tr(x,y) = 1. 
Proof Let z be any element of J. Using the definition of 

idempotent we have 

Uy z = Uurz = Uy Ux Uyz = Uy tr(Uyz,x)x 

= tr( Uyz,xlY for every z in J. 

That is, Uy(J)~Cy (with C the complex field). 
It is known thatthis implies y# = 0.25 Furthermore x = UxY 
= tr(x,y)x implies tr(x,y) = 1 which concludes the proof. 0 

Proposition 2.3: Ifx##OandN(x) = ° then there exists 
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an element ZE J such that x# XZ = x. 
Proof If x# =1= ° then there exists y such that tr(x# ,y) = 1 

by nondegeneracy of the trace.27 Using (1.19) it follows that 
x# X (x Xy) = x. The proposition is thus proven for 
z=xX~ 0 

Proposition 2.4: Let (x,y) be an idempotent of V. If 
x# =1=0 and N(x) = ° theny# =1=0, N(y) = 0 and tr(x,y) = 2. 

Proof It follows from (1.15) that x# = (Uxy)# 

= Ux#Y# =1=0, hence, y# =1=0. Furthermore, again from 
(1.15), (x#,y#) isan idempotent and from (1.12)x# is a rank 1 
element. Thus, by Proposition (2.2), y# is a rank 1 element; 
hence, N( y) = 0 by (1.16). Moreover, tr(x#,y#) = 1. It re­
mains to prove that tr(x,y) = 2. To have this we calculate 

x = UxY = tr(x,y)x - x# Xy = tr(x,y)x - x# X Uyx 

= tr(x,y)x - x# X (tr(x,ylY - y# Xx) 

= tr(x,y)x - tr(x,y)x# Xy + x# X (y# Xx) 

= tr(x,y)x - tr(x,y)x# Xy + tr(x# ,y#)x, 

having used in the last step the identity (1.19) withy# instead 
of y. Since tr(x# ,y#) = 1, it follows from the calculation 
above that 

tr(x,y)x = tr(x,y)x# Xy. 

Suppose tr(x,y) = 0, then y = Uyx = - y# Xx and 
0= tr(x,y) = - tr(x,y#Xx) = - tr(xxx,y#) 
= - 2tr(x#,y#) = - 2, a contradiction [we have used the 

identity (1.18)]. Thus, 

tr(x,y)=I=O and x = x# Xy. 

So X = UxY = tr(x,y)x - x which implies tr(x,y) = 2 ending 
the proof of the present proposition. 0 

Proposition 2.5: Let (x,y) be an idempotent of V and let 
N(x)=I=O. Theny =x- I and, in particular, tr(x,y) = 3. 

Proof Since N (x) =1= 0 we can define an isotope of J in 
which x is the identity. Any two exceptional central simple 
Jordan algebras over an algebraically closed field are iso­
morphic. Therefore, there is just one orbit in Str( J). Thus 
there exists gEStr J such that g(x) = I. We can thus define an 
automorphism of Vby (g, g'), where l2 g' = U ;;fig, under 
which the trace tr(x,y), the "generic trace" of an element of a 
Jordan Pair, is preserved. 12 By definition of automorphism 
of Vwe have 

1= g(x) = g( UxY) = Ug(X)g'( y) = UIg'( y) = g'( y) 

(because Ulz = Z for every XE J). 
Hence, tr(x,y) = tr(g(x), g'( y)) = tr I = 3. Therefore, 
x = UxY = 3x - x# Xy, that is, 

x# Xy = 2x (and analogously y# Xx = 2y). (2.5) 

Notice that, by (1.15) and (1.16), (x#,y#) is idempotent and 
N (x#) =1=0; hence, tr(x# ,y#) = 3 by the previous proof. From 
(2.5), (1.20), and (1.12) we get 

4x# = (x# xy)# = tr(x##,y) 

+ tr( y# ,x#)x# - x## Xy# 

= N(x)tr(x,ylY + 3x# - N(x)xxy# 

= 3N (xlY + 3x# - 2N (xlY. 

That is, x# = N( xlY or y = N( X)-IX# = X-I. The last step 
is indeed an identity.25 This completes the proof of the pres-
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ent proposition. 0 
From the Propositions (2.2), (2.4), (2.5), together with 

the classification (2.2), the result given in Proposition (2.1) 
follows. 

Remark 2.1: The classification of the idempotents of a 
Jordan Pair given in Proposition (2.1) is the exact analog of 
the classification of the idempotents in the Jordan AlgebraJ. 
In the case of J, indeed, the equation x 2 = x has solutions 
only for tr x = 1, tr x = 2-in both cases N(x) = 0 (Ref. 
24)-and tr x = 3, in which case x = l. 

Although the classification of the idempotents of V is 
analogous to that of J, the number of idempotents of V is far 
larger than the number of idempotents of J. Indeed any ele­
ment of J can be completed to form an idempotent of V. [This 
can be easily shown using the fact that J is regular,27 that is, 
for every element x in J there exists a y such that x = UxY. In 
this case (x,Uyx) is an idempotent of V.l 

We can, though, restrict the class of idem po tents when­
ever we can impose an "appropriate" normalization condi­
tion, as indicated by the following Proposition: 

Proposition 2.6: Let x and y be any elements of J 
satisfying 

tr( x,x·) = tr( y,y.) = tr( x,y). 

Then x =y •. 
Proof Let us calculate explicitly the trace tr( x,y) for x 

as in (1.8), andy obtained from (1.8) by replacing a withP, a 
with d, b with/, and e with g. Then it is easily shown that 

tr( x,y) = a IPI + a 2 P2 + a 3 P3 + t (ad) + t (bl) + t (eg) 

= a l PI + a2P2 + a 3P3 + 2aada + 2ba fa + 2eaga, 

(2.6) 

where aa is the component of a for the octonionic unit ea, 
with eo = 1, and where we have used the summation 
convention. 

From (2.6) it follows that 

tr( x,x·) = alar + a 2at + a 3ar 

+ 2aaa~ + 2bab~ + 2eae~, (2.7) 

tr( y,y.) = PI P r + P2 P t + /33 P r 
+ 2dad~ + 2faf~ + 2gag~. (2.8) 

We can now regard A = (1IV' A.) (a l ,a2,a3,v2aa ,v1ba ,v'2ca ) 

andB = (1IV' A.)( pr, + PUJr,V'2 d~, v1f~,v1g~)as vec­
tors in a 27-dimensional complex vector space (;27 with the 
usual scalar product. If we put A. = tr( x,x·) = tr( y,y.) 
= tr( x,y), then (2.7) and (2.8) read: A and B are normalized 

to one; and (2.6) reads: the scalar product of A and B is equal 
to one. Using then the Schwartz inequality it follows that 
A = B which immediately implies x = y •. This completes 
the proof of Proposition 2.6. 

Remark 2.2: As an immediate consequence of(2.7) we 
have that tr( x,x·) is a real number, which is positive and, 
being a sum of positive numbers, is zero if and only if every 
summand is zero, that is if and only if x is zero. For this 
reason we can use tr( x,x·) for a normalization condition 
onx. 

Applying Propositions (2.1) and (2.6), the appropriate 
normalization conditions in the various cases of Proposition 
(2.1) are 
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for case (i) 

for case (ii) 

for case (iii) 

tr( x,x*) = tr( y,y*) = 1, 

tr( x,x*) = tr( y,y*) = 2, 

tr( x,x*) = tr( y,y*) = 3. 

(2.9) 
(2.10) 
(2.11) 

The normalized idempotent we get in the three cases is ( x,y) 
withy = x*. We shall call the idempotents of case (i) satisfy­
ing the normalization (2.9) "primitive normalized idempo­
tents." The reason why we call them primitive is that x can­
not be written as a sum of two orthogonal rank 1 elements in 
J. We shall define later on the concept of orthogonality be­
tween idempotents and it will then be easy to see that a primi­
tive idempotent, as we have defined it now, cannot be written 
as a sum of two orthogonal idempotents. 

4.3. The Peirce decomposition 

In analogy with the theory of quadratic Jordan Alge­
bras· 7 it is possible to define the Peirce decomposition of a 
Jordan Pair with respect to an idempotent (X,y).·2 Define 
F 2+ = UxUy;F.+ = Vx.y -2Ux Uy; 
F 0+ = Id - Vx,y + Ux Uy with analogous definitions for 
F i- , i = 0,1,2. Then F~,Ff,Fg are orthogonal projectors 
whose sum is the identity. Correspondingly we have the 
decomposition 

V"=V~G1VfG1Vg, whereFfV"=Vf. (3.1) 

Denoting Vi = (V i+ ,V i- ) we can formally write 

V = V2 G1 V. G1 VO' (3.2) 

Suppose now that ( x,y) is a primitive normalized idempo­
tent. That is x # = Y # = 0, tr( x,x*) = 1, andy = x*. Then 
the Peirce decomposition of V + with respect to it is given by 

F / Z = Ux Uyz = tr(z,y)x, (3.3) 

F.+ z = (Vx,y - 2Ux Uy)z = z - tr(z,y)x - (x Xz) Xy, (3.4) 

Fo+z=(xXz)Xy, (3.5) 

for every z in J. 
The derivation of these formulae is straightforward. 

For example, if we take (x,y) = (E.,E.), where 

E,~G ~ ~) 
and we have 

then 

(' 0 

~) , F'+Z~a 
a f) , F 2+z= ~ 0 0 

0 0 

Fo'Z~~ 
0 

~) a 2 
C a3 

Given the Peirce decomposition of V with respect to the 
idempotent (x,y), the following results hold· 2

: 

V / = Im( Ux ), (3.6) 

(3.7) 
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where V f = 0 for i#0,1,2. 
We now come to the main result of this section: 
Proposition 3.1: Let (x,y) be a primitive normalized 

idempotent of V, and V" = V ~ G1 V f G1 V g be the Peirce 
decomposition with respect to it. Then V ~ and V g areprin­
cipaJ inner ideals. V / (respectively V ;) is the principal 
inner ideal generated by x (respectively y); V 0+ (respectively 
V 0-) is the principal inner ideal generated by an element 
bE V 0+ (resp. V 0-) such that b # # 0, N (b ) = 0; in the case 
y = AU (resp. x = AU) (where u2 = u, tr u = 1), b = 1- u; in 
the case x 2 = 0, b = y + u (resp. x + u), where 
u = - (x xy) and u2 = u, tr u = 1; finally V g is a maximal 
proper inner ideal of J. 

Proof The fact that V ~ and V g are inner ideals is an 
immediate consequence of (3.7). Equation (3.6) implies that 
V / (resp. V 2-) is the principal inner ideal generated by x 
(resp. y). We investigate now V g. 

(A) Suppose first that y = AU where u is a primitive 
idempotent of J. Consider the element b = I - u, which is a 
trace 2 idempotent of J. We have that b # = u # 0 and 
N(b) = 0 by (1.16). Thus, by Proposition (2.3) given b. such 
that tr(b #,b.) = I we can write 

b=b#X(b Xb,). 

We can choose b. = AX, since 
tr(Ax,b #) = tr( X,A.u) = tr( x,y) = 1. Hence, 
b = b # X (b XAX) = yX (b Xx) so that bEV 0+ by (3.5). We 
know already that V 0+ is a proper inner ideal, therefore, 
UbJr:;;, V 0+ by definition of inner ideal. But it is a known 
result27 that UbJ is a maximal proper inner ideal whenever 
b # # 0, N (b ) = O. Hence V 0+ = UbJ and the proposition is 
proven in the case (A). 

The result for V 0- is indeed analogous. 
(B) By (2.3) and Proposition (2.6) the only case remain­

ingisy2 = 0 = x 2
• We have that u = - xXy = 1- 2x·yhas 

trace 1 and is a rank 1 element by (1.20); hence it is a primi­
tive idempotent of J. Furthermore, as we shall prove in Pro­
position 3.3, u·y = U·X = O. Thus if we take b = y + u, we 
have 

b#=uXy= -y#O andN(b)=N(b#)'/2=0. 

We can now repeat the conclusion of part (A) of this proof, 
choosing b. = - x to show that bE V 0+ and, therefore, 
UbJ = V 0+ by maximality. The proof of Proposition 3.1 is, 
thus, complete. 0 

Proposition 3.2: Let ( x,y) be a primitive normalized 
idempotent and let x 2 = y2 = O. Then XE V 0 , yE V 0+ , for Vo 
in the Peirce decomposition defined by ( x,y). 

Proof: We shall prove that XE V 0- , the other having an 
analogous proof. We define u = - x Xy. As we have seen in 
part (B) of the proof of the previous proposition, u2 

= u, 
tr u = 1, and u·x = 0. Thus (xXy)Xx = - uxx = x; that 
is, XEV 0- by (3.5) and the proof is complete. 0 

Remark 3.1: For (x,y) as in Proposition 3.2, it follows 
from part B of the proof of Proposition 3.1 and the previous 
proposition that u = - x Xy belongs to both V o~ and V o' . 

Proposition 3.3: Ifx# = 0, then (xXz).x = ° for every z 
inJ. 
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Proof By (2.3) we can write x 2 = AX, tr X = A, where 
the range of A includes zero. Using the identity (1.24) we 
calculate 
(xxz).x = 2(x·z).x - x 2 tr z - (z·x)tr X - X tr(z·x) 

+ x tr x tr z 

= Uxz + x 2 ·z - x 2 tr z - (z·x)tr x - x tr(z·x) 

+ x tr x tr z 

= tr(x.z)x + x 2·z - x 2 tr z 

- (z·x)tr x - x tr(z·x) 

+ x tr z tr x 
= AX'z - AX tr z - AX'Z + AX tr z = 0, 

which proves the Proposition. D 
Proposition 3.4: V 0+ ~ I z:z·y = 01 ,where V 0+ is the 

Peirce decomposition with respect to a primitive normalized 
idempotent (x,y). 

Proof It follows from (3.5) and the previous proposi-
tion. D 

We examine now the subpairs composed of inner ideals 
that we shall use in the next section to define the geometrical 
objects. 

Definition 3.1: A pair of sub modules (W +, W -) of 
(V + ,v -) is a subpair if U W" W - a C wa. 

Proposition 3.5: The only pairs of V~, V j - awhich form a 
subpair of V are (V~, V j- a), i = 0, I, 2. 

Proof It follows from the Definition 3.1 and from (3.7) 
that we have subpairs if2i - j = i, that is, i = j, which proves 
the proposition. D 

We want to introduce the concept of orthogonality be­
tween idempotents. Before doing so we need the following 
result, proven in Ref. 12: 

Proposition 3.6: Let x = (x+ ,x-) andy = (y+ ,y-) be 
idempotents of V such that x a E vg( y), where vg(y) is in the 
Peirce decomposition defined by y. Then also,ya E vg(x) and 
x + y = (x+ + y+,x- + y-) is an idempotent. 
Furthermore, 

Vx'.y = Vx .y' = Vy ,x' = VY'.x = O. (3.8) 

Whenever x a E vg( y) we shall write XEVo( y). 

Definition 3.2: Two nonzero idempotents x andy are 
called orthogonal if y E Vo(x). 

It follows from the previous proposition that orthogon­
ality is a symmetric relation. It is also evident that primitive 
idempotents cannot be written as a sum of two orthogonal 
idempotents. 

4.4. Geometry of V 

Given a primitive normalized idempotent x = (x+ ,x-) 
in V, we associate to it 

(i) a point x* = V2(x), 
(ii) a line x * = Vo(x). 

We say that 

(a) x* is incident to y * (written x* Iy*) if 
V2(x) C Vo(y), 

(b) x* (x*) is connected to y* (y*) (written 
x* g,:y*(x*g,:y*) if V2(x) C V2(y) Ell V,(y), 

(c) x* is connected to y * (written x* g,:y*) if 
V2(x) C Vo(Y) + V,(y). 

1335 J. Math. Phys., Vol. 23, No.7, July 1982 

Proposition 4.1: Letz = (z+ ,z-) andx = (x+ ,x-)betwo 
primitive normalized idempotents. Then, 

z+ E V / (x) if and only if z- E V j- (x). 
Proof Suppose Z+EV 2+ (x); then 

z+ = tr (x- ,z+)x+, 

z- = (tr (x-, z+))*x- = tr (x+, Z-)X-EV 2- (x). 

Suppose now Z+EVo+ (x); then, 

z+ =(x+xz+)xx-, 

z- =(x+Xz+)*X(x-)* 

= ((x+)*X(z+)*)X(x-)* 

= (x- XZ-)XX+EVo- (x). 
From this it follows that ifz+EV t (x), then Z-EV ,- (x). The 
same is obviously true inverting the signs; hence, the propo­
sition is proven. 

This proposition allows us to choose as representative 
of points and lines just the elements of J which generate V 2+ 

and V o+. 

As we did in the case of A2 we want to consider the 
subgroup G of the structural group of J(which is isomorphic 
to the automorphism group of the Jordan Pair V) which 
maps primitive normalized idempotents into themselves. 

The structural group of J has 79 generators, coming 
from the three-grading of the (complex) Lie algebra of?f 7' 

Out of these 79 generators, 78 form the complex Lie algebra 
E6 , 15 and the 79th isjust a change of scale. When we consider 
the subgroup G of Str (J) we obviously get from this last 
generator the (compact real form) U(l), and from 'fj 6 a sub­
group H such that, for any x in J, 

(g+(x))* =g_(x*) (4.1) 

for every g+, g_E H, where (g+, g_) EAut(V). 
Proposition 4.2: Equation (4.1) holds for every primitive 

normalized idempotent (x, x*) if and only if 

tr(x, x*) = tr(g+(x), g+(x)*). (4.2) 

Proof If(4.1) is true, then (4.2) follows because Aut(V) 
preserves the generic trace. Vice versa if (4.2) is true 

tr(g+(x),(g+(x))*) = 1 = tr(g_(x*),(g_(x*))*) 

= trig + (X),g _(x*)). 

Hence by Proposition 2.6, g + (x) = (g _ (x*))*, and the present 
proposition is proved. 

From Eq. (4.2) we derive that H must be compact. In 
fact it follows from Proposition 2.6 that H must be a sub­
group ofU(27), which is compact. 

Furthermore if we denote by G + and G _ the generators 
of g + and g _, we get 

triG +(x),x*) = - tr(x,(G +(x))*) (4.3) 

which implies that the Lie algebra of H is real. In fact multi­
plying G + by A we still have an equality, which implies A 
real. 

Therefore H = ?f 6,0 (Ref. 23), the compact subgroup of 
If? 6' generated by the compact real form E 6.0 of E6 • If? 6,0 does 
indeed preserve tr(x,x*) and is obviously the maximal com­
pact subgroup of If? 6' E 6,0 can be realized via Tit's construc­
tion,28 as the Lie algebra of the transformations 

x--+(A,x,B) + iC.x, (4.4) 
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whereA,B,C are traceless Hermitian matrices of the real v11 8 

and ( , , ) is theassociator. IfG + is the transformation (4.4), 
then 

G_(X*) = (A,x*,B) - iC.x*. (4.5) 

The 27-dimensional representation of i? is complex and it . ~o 
IS not equivalent to its complex conjugate. 

Remark: The compact real form E60 must not be con­
fused with the Lie algebra of the structu~al group of the real 
.A"~, which is also the collineation group of the Moufang 
plane. 2J The latter is the noncompact form E6.0' of signature 
- 26. '6 6 ,0' has only real representations. 29 

Proposition 4,3: If gEi? 6,0 ® U(l), then XEVi (e) implies 
g(X)EV,(g(e)) (i = 0,1,2) for x,e primitive normalized 
idempotents. 

Proof It follows directly from the definitions of auto-
morphism and Peirce decomposition. 0 

Defining the following natural action of 'f} 6,0 ® U( 1) on 
the POints 

g(X,,) = (g(X)) " ' (4.6) 

it stems from Proposition 4.3 and the previous consider­
ations that 'f} 6,0 ® U( 1) preserves the relations in the geome­
try. [This is the reason for using 'f} 6.0 ® U( 1) in Proposition 
4.3, which is true \fgEAut(V),] 

Definition 4.1: Two points x" and y" are orthogonal 
(x" ly,,) if XEVo(Y). 

We now state the following important result, that we 
shall prove in the Appendix B: 

Proposition 4.4: i? 6.0 acts transitively on points and on 
triples of mutually orthogonal points. The maximal sub­
group of i? 6.0 leaving a point invariant is SOt 10) ® V( 1); 
therefore, the plane we are considering is the homogeneous 
space i? 6,o/SO(10) ® Uti). 

. [Here we have used the tilde over U( I) to distinguish 
thiS as a subgroup of i? 6.0 from the "overall" phase group 
U( 1) which is obviously outside i? 6.0' The action of V( I) is 
written explicitly in the proof of Proposition 4.4 (see Appen­
dix B).} 

To proceed with the discussion of the geometry, we re­
call the following definitions: 

Definition 4,2: A collineation (resp. correlation) is a bi­
jective map of the points of a plane 9 onto the points (resp, 
lines) ofa plane 9', and of the lines of 9 onto the lines (resp. 
points) of 9', preserving the incidence and connectedness 
relations. 

Definition 4.3: A correlation of 9 onto itself is a 
duality. 

Definition 4.4: A duality of order 2 is a polarity, 
Definition 4,5: A point x" in 9 is isotropic with re­

spect to the polarity 1T if x" )1T(X,,). 

Definition 4,6: A polarity with respect to which no 
point is isotropic is called an orthocomplementation, 

It is immediate to see that the correspondence we made 
1T:X" +-+X" is an orthocomplementation. 

This is a fundamental result we are going to use in build­
ing a quantum theory on the geometry we have defined. The 
orthocomplementation is indeed needed in defining both the 
proposition system and the states of the quantum logic. 
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An orthocomplementation is an "elliptic" polarity de­
fining an "elliptic geometry".23 

Planes, called Hjelmslev-Moufang planes, defined over 
an exceptional central simple Jordan algebra on a split Cay­
ley algebra, and therefore including our complex J, have 
been investigated in Ref. 30. We want to stress that the 
Hjelmslev-Moufang plane, obtained by complexifying real 
vII~, '3 although similar to ours, is defined over a hyperbolic 
polarity (i.e., a polarity admitting isotropic points). It is, 
therefore, difficult to give it a quantum mechanical interpre­
tation. We shall compare the two planes in Appendix C, 
where we shall also see how certain results valid in the 
Hjelmslev-Moufang plane hold true in the plane we have 
defined. In particular we can reproduce the following 
results: 

(1) If x" ~y" there is a unique line incident to both of 
them, 

(2) Ifx" ~y" there is at least one line incident to both 
of them. 
We shall see in the next section that two connected lines 
intersect in more than one point, which shows that this ge­
ometry is not projective. To do this we introduce the concept 
of point spaces. 

5. THE POINT SPACES 

We want to show in this section that the reason why we 
have a nonprojective geometry (in the sense that two lines 
may intersect in more than one point) is that in the structure 
we are dealing with, the following three related facts occur: 

(1) the existence of nilpotent elements in J (due to the 
fact that J is defined over a split Cayley Algebra ~); 

(2) the existence of connected points; 
(3) the existence of non-principal inner ideals in J. 

To do this we must go back to the general theory of the 
algebra oW' of the 3 X 3 Hermitian matrices over a Cayley 
algebra ~ . There are just three kinds of inner ideals27 in oW': 
(i) oW'; (ii) g:; = b # XoW', where N(b} = O,b # #0; (iii) g:; # 

= 0 (i.e., g:; contains only rank 1 elements). 
The first two ideals are the principal inner ideals gener­

ated by I (the identity in oW') and b (resp.). 
If ~ is a division algebra then the third one is of the 

form <pb, <p being the field on which ~ is defined, and in this 
case g:; = Ub (oW') is principal. 

The ideal g:; # = 0 is called a point space. If ~ is a 
division algebra any point space is one dimensional. [The 
proof of this statement is very easy. Suppose that band b l 

belong to a point space, then also, b + b, must belong to it by 
definition of ideal. In particular (b + bJ)# = 0, which im­
plies b X b, = o. It is possible to show that the action of the 
structural group of oW' preserves the inner ideals, thus we can 
take b = E,. The condition b Xb l = 0 implies then, 

a 
o 
o 

and b r # = 0 implies 

n(a) = nrc) = ac = 0 . (5.1) 

If ~ is a division algebra it follows from (5.1) that a = c = 0 
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and b l = b.] But if C(! is split, as in our case, the point space 
containing b is not one dimensional. It is possible to prove27 

that starting from b we can build a point space whose maxi­
mal dimension over ¢ is either 5 or 6. These are called the 
maximal point spaces of the first and second kind. For 
b = E I these can be written in the form 

(i) EI + C(! €[1,2] first kind, 

(ii) EI + €c(![1,2] + ¢€[1,3] second kind, 

where € is a primitive idempotent of C(! [therefore 
dim~ C(!€ = 4 (Ref. 31)]. We have used thenotationa[1,2] for 
the matrix with entry a in the (1,2) position and a in the (2,1) 
position and all others equal to zero. 

We can extend the definition of point space to our Jor­
dan pair just by doubling the point space in J with its conju­
gate. The group 'if 6,0 being a subgroup of Str ( J) will then 
preserve the inner ideals and in particular the point spaces.27 

Thus we get that the necessary condition for two points 
x = (x+,x-) andy = (y+,y-) to belong to a point space is 
x+ Xy+ = 0 . From Appendix C it follows that the points x 
and yare connected. Vice versa, if two points x and yare 
connected, they can always be imbedded in a point space. 

We show now with an example that the maximal point 
spaces of the first kind (dim. 5) are just the inner ideals occur­
ring in the intersection of two connected lines. (Note that the 
intersection of two inner ideals is an inner ideal). We take the 
lines e3 and a3 associated to the primitive normalized idem­
potents e3 = (E3,E3) and a3 = (c2*[2,3],a[2,3]), where 
n(a) = 0 and c2*a + aa* = 1. 

We want to write explicitly V 0+ (e3 ) and V 0+ (a 3 ). To do 
this we note that XE V 0+ (e) if and only if 

(e+Xx)xe- =X. (5.2) 

It is easy to check that XEV 0+ (e3) iff 

x~G ~: ~). 
and that XEV 0+ (a3) iff 

G' 
X3 X,) 

x= x: a 2 XI 

XI a 3 

G a, 
(x3a*)a (£"")5) 

= a(a*x3) 0 t(a:xl)a , (5.3) 

(c2*x2 ) t(c2*xl)a 

using Eq. (5.2). We want to prove that (5.3) implies 

(i) a 2 = a 3 = 0 , (5.4) 

(ii) x I = A.a for any A.EC , (5.5) 

(iii) X3 = ya for any YEC(! , (5.6) 

(iv) X 2 = az for any ZEC(!. (5.7) 

Proof: (i) (5.4) is immediate. 
(ii) From (5.3) it follows that XI = t (c2*xtJa; therefore, 

x I = A.a for A. = t (a* X I); vice versa if x I = A.a for any A.EC 
then t(c2*xI)a =A.t(c2*a)a =A.a =XI , which proves (5.5). 

(iii)x} = ya fory = x}c2*; vice versaifx} = ya for every y 
in C(! we have, from the Moufang identity [( yx)a]x = y(xax), 
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that [( ya)a*]a = y(aa*a) = y[a(a*a + aa* - aa*)] 
= ya - (ao)a* = ya, which proves (5.6). 

(iv) is analogous to (iii). 
We can therefore write the two lines as 

C 

o 

Cii . 

C(!a 

o 
Co 

C(! a) 

o 
(5.8) 

Since n(a) = 0 it follows thae t the dimension of Ca is 4. 

o 

It is therefore possible to read directly from (5.8) that 
the dimension of the lines is 10 and that the dimension of 
their intersection is 5. The intersection is therefore a maxi­
mal point space of the first kind. It is proven in Ref. 30 that 
any maximal point space of the second kind can be obtained 
by considering the set of points x *' incident to a given line 
y *' and connected to a given Z *' which is itself connected to 
y*'. That is, (x*,:.x* I y*', x*, ~Z*" wherez*, ~y*l con­
tains a maximal point space of the second kind. This result, 
which is proved in Ref. 30 for the Hjelmslev-Moufang 
planes, can be translated to our geometry. We omit the 
proof. In ending this section, and with it the description of 
the mathematical framework of this paper, we want to em­
phasize that the point spaces are the new interesting object of 
the whole structure. Although they do not show up explicit­
ly, neither in the geometry nor in the proposition system of 
the quantum mechanics (as we shall see in the next section), 
they are responsible for making the geometry nonprojective 
and, consequently, the proposition system not a lattice. 
Their appearance makes, in our opinion, this plane peculiar 
and interesting. 

6. THE QUANTUM LOGIC 

6.1. The proposition system 

The language of quantum mechanics has always been 
identified with the language of projective geometry, the 
points of the geometry being identified to the density matri­
ces of the (pure) states, and the lines and hyperplanes with 
the propositions which are not atoms. The automorphism 
group of the geometry-that is its collineation group-is, 
however, larger than the automorphism group of the quantal 
structure, because collineations need not preserve the traces 
(which are the canonical measures defining the quantal 
states) nor the orthogonality, which has no projective mean­
ing. In mathematical language we can say that the quantum 
logic requires an automorphism group which preserves an 
elliptic polarity. For this reason, for instance, the automor­
phism group of the quantum system described in Ref. 8 for 
the Moufang plane is Y 4.0' whereas the collineation group 
of the plane itself is 'if 6.0. , which contains Y 4,0 as maximal 
compact subgroup. We need not investigate (although it is an 
interesting task) the collin eat ion group of our plane, since we 
have determined the group which is needed in describing 
automorphisms of the quantum system, This is the compact 
group 'if 6,0 ® U( 1), which preserves the trace tr (x,x*) and the 
orthocomplementation (i.e., our elliptic polarity). 

The possibility of giving a quantum mechanical inter­
pretation to our structure, despite the nonprojectivity, is 
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therefore beginning to appear. 
Let us define the proposition system. We obviously 

identify the propositions with the geometrical objects: points 
and lines (the principal inner ideals of the pair). They form a 
partially ordered set, with ordering given by the set inclusion 
of the inner ideals. The plane itself, which is the principal 
inner ideal generated by an invertible element, is the trivial 
proposition. 

We have an orthocomplementation a---+a1 which is our 
polarity a* .......a*. Therefore, we can define orthogonality: 

alb if a<b\ 

which is symmetric. 
We have, indeed, the basic building blocks for con­

structing a quantum logic. The only concepts of the standard 
theory which are weakened are the concepts of greatest low­
er bound ("meet") and ofleast upper bound ("join"). They 
are not defined here for every pair of propositions. In fact, two 
connected lines do not intersect in a unique point and the 
"join" oftwo connected points is not a unique line (geometri­
cally the second is indeed the dual of the first sentence). 
Therefore we do not have a lattice structure. But the subsets 
made of nonconnected points and lines are sublattices of the 
partially ordered set. 

We want to stress, at this point, that the concept of 
"meet" (with its dual "join") is the only weak concept in the 
axiomatics of quantum theory. In the standard theory,32 to 
define the proposition c which is the meet of a and b we are 
forced to consider an infinite sequence of propositions: 
a,b,a,b, .... Indeed, if we just measure a and then b we can 
obtain a different result with respect to measuring b and then 
a, because the measurement of a proposition in general af­
fects the initial state. This is just the peculiarity of quantum 
mechanics. The only way to overcome this obstacle is to say 
that c is true when the measure of the infinite sequence 
a,b,a,b, ... gives the result I. It is not possible physically to 
perform such a measurement; therefore, there cannot be any 
experimental evidence for assuming the existence of the meet 
of a and b as an axiom for a quantum theory. Therefore, a 
quantum logic which is not based on a lattice structure is 
perfectly conceivable. 

Remark: Although it would violate the geometrical 
structure, and is not actually required for a quantum me­
chanics, one could still think of including the point spaces in 
the proposition system, in order to save the lattice structure. 
In this way one would indeed reach the goal of having a 
"meet" for any pair of lines (for the connected lines it would 
be a maximal point space of the first kind) but, at the same 
time, one would lose the orthocomplementation. Contrary 
to the concept of meet, the concept of orthocomplementa­
tion has an immediate intuitive meaning: it states the exis­
tence of the proposition "not a" for any proposition a. 

The lack of a lattice structure affects the concepts of 
superposition between two propositions. By using the anal­
ogy between geometric points and density matrices of pure 
states, it is evident that the usual concept of superposition 
between states in a Hilbert space is translated and general­
ized in geometrical language by saying that the point P, is a 
superposition of the points P, and P2 whenever P3 is incident 
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to the line incident toP, and P2 • In our geometry if PI andPz 
are connected points they do not define a unique line inci­
dent to both. Accordingly the concept of superposition of P I 
and P2 fails. But we emphasize again that this happens only if 
P, and P2 are connected (the existence ofpoint spaces of di­
mension greater than 1 is responsible for this). If P I and P 2 are 
nonconnected, indeed, there exists just one line incident to 
both of them and any P3 on this line is a well-defined super­
position of P, and P2 • 

Remark: We stress that this kind of failure of the con­
cept of superposition has no analog in the usual quantum 
theory. In that case the concept of superposition fails only in 
the presence of superselection rules, which occur when the 
lattice is reducible. When we have a superselection rule we 
cannot define the superposition of P, and P 2' for P, and P 2 in 
two different irreducible components of the lattice, simply 
because there is no way of defining it as a point. In our case 
we have an irreducible proposition system (it is easy to see that 
the center is trivial) and the superposition of P, and P2 is not 
defined if P, is connected to P2 because it is not unique. 
Roughly speaking, in a reducible lattice we have no superpo­
sition of P, and P2; in our irreducible proposition system we 
have too many. 

A similar unusual feature shows up when we consider 
the sum of two connected points P, and P2 • We get that 
P, + P2 is a point again. In the usual quantum theory the 
closest analog to this happens only in a reducible lattice and 
in this case the state related to the sum is a mixture of the 
states related to P, and P2• But in our case we have an irredu­
cible system and P, + Pz is not related to a mixture but to 
another pure state. Once again the existence of point spaces 
of dimension greater than 1 is responsible for this 
peculiari ty. 

We now consider the concept of compatibility. This is 
essentially the concept which makes the distinction between 
a classical and a quantal system. In a classical system, in­
deed, all the propositions are compatible. In the language of 
lattice theory, a classical system is described as a Boolean 
lattice. '0 In a Boolean lattice any triple of propositions a,b,c 
satisfies the following distributive laws with respect to the 
"meet" (1\ ) and the "join" (V): 

a 1\ (b V c) = (a 1\ b ) V (a 1\ c), 
(6.1) 

a V(bl\c) = (aV b )I\(a V c). 

We shall define a subset J( of the proposition system 9 as a 
compatible set of propositions if j( generates a Boolean sub­
lattice of .9. 

It follows immediately from the definition that two con­
nected points are not compatible (because they do not even 
generate a sublattice), and that two orthogonal points are 
compatible. 

We want to show that any two propositions a,b, such 
that a < b, are compatible. If a < b, then a V b = band 
a 1\ b = a by definition. Furthermore, a and blare noncon­
nected, because they are orthogonal; therefore, a Vb 1, 
a1 V b, a 1\ b l, a1 1\ b exist. Hence, a,b generate a sublattice S 
and it is very easy to show, applying the usual arguments of 
projective geometry, that S is Boolean. 
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To the property of compatibility of two ordered propo­
sitions is given the name of orthomodularity or weak modu­
larity. We can therefore state that our proposition system is 
orthomodular. 

It is well known33 that any projective geometry (of finite 
dimension) has a property stronger than orthomodularity. 
This is the so-called modular law: 

a V (b A c) = (a Vb) A c for all a < c. 

It is clear that we do not have this property because a V band 
b A c may not be defined. However, this law is satisfied by 
any sublattice of our proposition system. 

We stress again that the modular law has no immediate 
physical meaning. It is even incompatible with the concept 
of localizability in quantum mechanics, due to the infinite 
dimensionality of the Hilbert space on which the position 
operator is defined. A Hilbert space is indeed orthomodular 
and it is modular only in finite dimension. The assumption of 
the modular law in a quantal system has therefore no phys­
ical justification, even in finite dimension. A non modular, 
but weakly modular, proposition system is perfectly 
conceivable. 

6.2. The states 

There is no quantum theory without the definition of a 
function (state) which "measures" the propositions in the 
system and is invariant under the automorphism group of 
the proposition system. Geometrically this function is relat­
ed to the invariant distance function between two points 
(whenever it is possible to define it). The distance between 
two points x and y is interpreted physically as the measure 
ax(Y) ofy in the "state" a< associated tox. In this case x 
plays the role of the density matrix associated to a (pure) 
state in the usual quantum theory of the Hilbert spaces. 

In the standard theory the state a x is a probability func-
tion, and as such must satisfy 

(1) O<ax ( y)< 1 for every propositiony, 

(2) ax(x) = 1, (6.2) 

(3) ax(Y, V Y2) = ax(Y,) + a«Y2) ify,lh 
Having defined points and lines by use of the Peirce 

decomposition it is natural to associate them to the Peirce 
projectors F2 and Fo on the spaces V2 and Vo. It is natural as 
well to make use of these projectors to determine the "dis­
tance" between two points and between a point and a line. 
What we have to do is to project one point on the Peirce 
space defining the other point (or the line) and take the 
square root of the trace. (The reason why we must take the 
square root will be clear in the sequel). 

We thus define for any point x the following "measure": 

(i) ax(y*) = (tr (Ux' Ux- y+,Ux Ux• y-))'/2 = Itr(x+,y-lI, 

(6.3) 

(ii) ax(Y*) = (tr ((y+ Xx+)X y-,(y- Xx-IX y+))1/2. 

Notice that x = (x+ ,x-I is defined up to a phase, and so isy, 
but (6.3) is independent of the phases of x andy. 

The "measure" (6.3) is manifestly ~ 6,0 ® U(I) invariant 
and, because it is defined by projectors and x and yare nor-
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malized, clearly satisfies (1) and (2) of (6.2). Furthermore, 
ax (y*) = 1 if and only if x* Iy* . 

To have an example of how this "measure" works con­
siderx* agenericpointandy* = (e.)*, wheree, = (E"E,). 
This represents also the most general case because of the 
transitivity of ~ 6.0 ® U( 1) on points and the invariance prop­
erty of our "measure." In other words, we can always trans­
form y into e I (thus changing also x) and still have the same 
measure. Writing x+ as 

a 

f3 (6.4) 

and denoting by F2,Fo the projectors on V2( y), Vol y), we have 
(see Sec. 4.3) 

£tx+ ~(~ ~ 
We therefore get 

ax(y*) = (aa*)'/2 = lal , 

ax(Y*) = 1j3f3* + rr* + cc* + c*c)'/2 

o 
f3 D (65) 

(6.6) 

«tr(x+,x-))'/2 = 1 . (6.7) 

From (6.7) and (2.7) it follows that ax (y *) = 1 if and only if 
a = a = b = 0, that is, if and only ifx* Iy *. 

In particular, by taking x + and y + as real octonionic 
matrices [or such that can be mapped into real octonionic 
matrices by an ~ 6.0 ® U( 1) transformation], then (6.6) and 
(6.7) imply that ax restricted to the real octonionic case is 
just the unique probability function defined in Ref. 8 on the 
Moufang plane. In fact from (6.6) and (6.7), in the real octon­
ionic case, 

ax(y*) = lal = a = tr(E"x+), 

ax(Y*) = (/32 + Y + 2cC)1/2 = 1j32 + r2 + 2f3r)'/2 (6.8) 

= f3 + r = tr(x+ ,E2 + E3 ), 

which is exactly the measure defined in Ref. 8. 
In showing (6.8) we have used the fact that for a trace 1, 

real octonionic idempotentx+ in the form (6.4), cc = f3r. To 
see this suppose first that a = 1; then 

x+ ~Q}I a iii. tr(x+) ~ I. (6.9) 

Therefore n(a) = nib ) = n(c) = 0 and in particular 
c = 0 = f3 = r = f3r. If a =1= 1, then either f3 or r or both are 
different from zero. 

Suppose f3 =1= 0; then 

x+ =(a~:)(alv'f3 
Clv'f3 

v'f3 clv'f3), (6.10) 

which implies cclf3 = r, that is, cc = f3r. This proves that 
(6.8) is, indeed, correct. 

From what we have seen so far the "measure" defined 
in (6.3) is the most natural one and extends the probability 
function defined in Ref. 8 on the Moufang plane. Let us now 
consider the additivity property (3) of (6.2). 
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Consider the line (e.)* and the point x* where 

x+ ~ +G ~ ~) (6.11) 

Take in (e l )* the following two pairs of orthogonal points: 
(e2)*, (e 3 )* and c *' (c*)* where c+ = a[2,3], 
(c*)+ = a*[2,3], aa = 0, and aa* + a*a = 1. 

We then easily get 

ax((e.)*) =~, 

a x((e2)*) = 1, axl(e3 ) * ) = 0, 

ax(c*) = ax((c*)*) = 0. 

(6.12) 

(6.13) 

(6.14) 

This shows that, for our "measure," the condition of ortho­
gonality ofy, andY2 in (3) of(6.2) is not sufficient to guaran­
tee the additivity. In fact (6.12) is equal to the sum of the 
"measurements" in (6.13) but not of those in (6.14). The vice 
versa would hold if we took, for instance x * = c * . I t is clear 
then that the condition for additivity must relate to the triple 
x, YI' andY2' Since the measure is additive whenever we can 
transform x, Y \l and Y2 into "real octonionic matrices" (by 
abuse of notation: x, Y I' Y2 are related to pairs not to matrices) 
then we know that a x ( y*) is additive (because the probabil­
ity function defined in Ref. 8 on the Moufang plane is addi­
tive). This condition is achieved34 whenever 

x* ~(f)* implies x* I(f)*, (6.15) 

where (f)* is any of the lines determined by YI andY2' which 
are 

Y~,Yi',y*. (6.16) 

A point is connected to a line whenever it is connected 
to any point of the line. By the condition (6.15) x*, ty.)*, 
(Y2)*, Y * form a "four point" which can be imbedded into a 
projective geometry, because (6.15) avoids any possibility of 
having nontrivial point spaces. 

This projective geometry is therefore isomorphic to the 
Moufang plane and the restriction of the "measure" (6.3) on 
it is additive. We can draw a picture for the condition (6.15): 

(6.17) 

x* is either incident or not connected to any line forming the 
triangle. 

In the language of propositions, denoting 

x* = a, (Yi)* = bi' i = 1,2, 
we have 
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(6.18) 

tyi)*=b~, y*=b~l\bL y*=b IVb2 (6.19) 

(since b,lb2, b , V b2 exists). 
It follows that the condition (6.15) is translated in the 

language of quantum logic by saying that the "measure" 
(6.3) is additive whenever the associated propositions a, b, 
and b2 generate a sublattice of the proposition system. Once 
again the existence of connected points, or equivalently of 
point spaces (of dimension greater than I) which is a conse­
quence of having a nondivision algebra of coefficients, af­
fects the definition of quantum objects, causing, in this case, 
this particular behavior of the "measure" naturally defined 
in our system. We notice that also this unusual feature has an 
analog in the standard theory for a reducible lattice. In that 
case the "join" of two points in two different coherent com­
ponents of the lattice is not a line and the additivity of the 
states cannot be phrased as in the irreducible case. 

But what is more striking and interesting for our "mea­
sure" is that it becomes the usual measure in a three-dimen­
sional Hilbert space when we restrict x and Y to complex 
matrices. In fact as an immediate consequence of the results 
of Appendix A, any rank 1 element in J, composed just of 
complex numbers, can be written in the form 

x ~GJA' A,A,)~)A )(A (. (6.20) 

Notice that we do not have complex conjugation in passing 
from 1,1, ) to (A I; therefore, 1,1, ) (A I isnot the usual projector 
in a Hilbert space which in the present notation is 1,1, *) (A I· 
Using x andy in the form (6.20) and because of associativity 
we can write 

Itr(x+,y-)I = Itr(IA) (A If.l*) (f.l*I)1 

= (A 1f.l*)2(A *1f.l)2)'/2 = 1(,1, 1f.l*W. (6.21) 

We also have that the restriction of g-' 6.0 to purely com­
plex matrices gives SU(3). To see this we consider the generic 
transformation of g-' 6.0 : 

x-lA, x, B) + i c.x. (6.22) 

The only way we can obtain purely complex matrices is to 
take A, B, and C real. Then A, x, and B associate under the 
ordinary matrix product and the associator in (6.22) can be 
written as a commutator: 

(A, x, B) = mA, B ],x]. 

Denoting D = HA, B] we can rewrite (6.22) as 

x-Dx - xD + (i/2)Cx + (i/2)xC 

(6.23) 

(6.24) 

when D is a real antisymmetric traceless matrix and C is a 
real symmetric traceless matrix. Therefore (6.24) becomes 

(D + (i/2)C)x + x(D + (i/2)Cy. (6.25) 

The matrix D + (i/2)C is a 3 X 3 skew-adjoint traceless ma­
trix and (6.25) is identified with the usual action ofSU(3), 
once it is taken into account that we do not conjugate the 
complex numbers passing to the "dual space." By taking the 
tensor product ofSU(3) with U( 1) we get the group U(3). This 
shows that the system we have been describing, having g-' 6.0 

® U( 1) as automorphism group, reduces to the usual theory, 
in dimension 3, of a complex Hilbert space having as auto-
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morphism group the unitary group. 
It is well known that ~ 6,0 has a maximal rank subgroup 

SU(3) ® SU(3) ® SU(3). (6.26) 
The only one of these SU(3) groups involving the imagi-

nary unit i is the one we have here described. The other two 
are obtained by singling out an octonionic imaginary unit 
and are subgroups of Y 4,0' one of which is in ;J 2,0' 

We conclude this section with three remarks. 
Remark 1: Notice the difference between the measure 

we have taken for our example in Sec. 3 and the present one. 
This difference (the appearance of a square root in the latter) 
is linked to the fact that in Sec. 3 we were pairing a Jordan 
triple system; here we are pairing a Jordan algebra. 

Remark 2: Notice that we can have ax (y) = 0 although 
x* is not orthogonal toy* (forinstancetakingx+ = EI and 
y+ = all, 2]). This can only occur when x* ~y*. 

Remark 3: The "measure" we have defined, when re­
stricted to the points [Eq. (1) of(6.3)] can be written as 

ax(Y) = MaxU tr (x+y- + y+x-)], (6.27) 

where the maximum is taken over the phase of y (or of x). 
Suppose, indeed, that tr(x + ,y -) = ...l,; then varying the 

phase of y we get 

~ tr(x+y-e - jO + x-y+ejO ) = ~(ejo...l, + eiO...l, *), (6.28) 

and the maximum will be reached when (J is such that ej°...l, is 
real and therefore equal to its modulus. 

It has been claimed thae,I3 

(6.29) 

[That is, (6.27) without the "maximum" condition] is a posi­
tive definite measure. We point out that because of (6.28), the 
expression (6.29) is not uniquely determined on the points 
(because of the arbitrary phase) and, furthermore, 

- l<! tr(x+y- +x-y+)<l. (6.30) 

We shall have further comments on this topic in 
Appendix D. 

6.3. The observables 

We can associate observables to the generators of the 
automorphism group ~ 6,0 ® U( 1) exactly in the same way we 
do in the usual quantum theory, namely, by multiplying the 
skew-Hermitian generators by the imaginary unit i to obtain 
Hermitian operators. Consider, in fact, Eq. (4.3); denote the 
generator G + by K and multiply K by i, Then 

tr((iK)x),x*) = - tr(x,i(Kx)*) = tr(x,((iK)x)*) (6.31) 

which shows that the operator iK =H is Hermitian with re­
spect to tr(x,x*) and that tr(Hx,x*) is real. 

In perfect analogy with the example of Sec. 3 (and with 
the usual quantum theory of the Hilbert spaces), tr(Hx,x*) 
defines the expectation value of the observable H in the state 
associated to x * . 

If we reduce the theory to the complex case, H becomes 
a self-adjoint operator and, for x in the form (6.20), we get 

tr(Hx,x*) = (...l, *H...l, ). (6.32) 

The observables are also directly related to the pair via 
the three-grading [Lf,L_ a CLo· The elements of 'l? 6 ® Care 
all generated by the set of transformations V + but out of x ,Y , 
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these transformations only the skew-Hermitian ones are 
generators of ~ 6,0 ® U( 1) and to these are related the obser­
vables, via a multiplication by i. 

Notice, however, that the spectral theory of the obser­
vables thus defined is completely different from the usual 
one. The spectral family of an observable in this theory can 
have at most three points. They can always be transformed 
into e l ,e2 ,e3 , where ej = (E;.Ej), i = 1,2,3, which generate a 
maximal Boolean sublattice. Therefore we can simulta­
neously measure only three eigenvalues of H, although H has 
many more independent parameters in it (the symmetry 
group being of rank 6 + 1). This unusual behavior is already 
present in the real vR~ case.35 Other problems affecting the 
real vH'~ case,35 however, are not present in this Jordan pair 
theory. 

The Hamiltonian of the system will be one of the Her­
mitian generators of ~ 6,0 ® U( 1). It will involve six indepen­
dent frequencies and will be shift invariant because of the 
presence of the group U(l) of the "overall phase." Time re­
versal can be consistently defined because of the presence of 
the imaginary unit i. For a more detailed discussion of these 
topics we refer to Ref. 35. 

ACKNOWLEDGMENTS 

We wish to acknowledge our indebtedness to Professor 
John Faulkner (University of Virginia, Charlottesville) for 
his generous help. In particular, Faulkner is responsible for 
the counter example to complete additivity [discussed in 
Eqs. (6.11)-(6.14)], and for the proper formulation of the ad­
ditivity restriction, Eq. (6.15), and discussion following. We 
wish to thank him for his many discussions and help. 

APPENDIX A 

We prove in this appendix the following two 
propositions: 

Proposition AI: Any trace 1 idempotent of J can be writ­
ten in the form 

(AI) 

where a, b, c are complex octonions, one of which is a com­
plex number, and which satisfy 

aii + bb + cc = 1 . (A2) 

Proposition A2: Any nilpotent of J with nonzero ele­
ments on the diagonal can be written in the form (A 1), where 
a, b, c are complex octonions, one of which is a complex 
number, and which satisfy 

aii + bb + cc = O. (A3) 

Using the associativity of the subalgebra generated by 
any two octonions (Artin theorem, Ref. 24) it is immediate to 
verify that an element of J which can be written in the form 
(AI) satisfying (A2) [resp. (A3)] is a trace 1 idempotent (resp. 
nilpotent). 

We now give the proofs of the two propositions. 
Proof of Proposition AI: Consider an element of J in the 

generic form 
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(: ~ (A4) 

Then, in order to be a trace 1 idempotent, it must satisfy 

(1) a2 + aii + bb = a, 
(2)fJ2 + aii + cC = fJ, 
(3)r+ bb+ cc=r, 
(4)be= ra, 
(5) ac =fJb, 
(6) iib = ac, 
(7) a + fJ + r = 1. 

We distinguish various cases: 
(A) Suppose n(a) = nIb ) = nrc) = 0. Then we get 

a2 = a,fJ 2 =fJ, r = r· ThuseitheraorfJorrmustbeequal 
to 1. Because of (7), just one of them can be I and the others 
vanish. ~ake a = 1 and fJ = r = 0. Therefore, from (4), (5), 
and (6), be = ° = ac and iib = c. Hence, 

mllabl ~ G ~ D 
satisfies the required conditions. 

(B) Suppose now that n(a) =f0and n(b ) = n(c) = 0. From 
(1), (2), and (3) we get 

a 2 
- fJ 2 = a - fJ and r = 0, 1. (AS) 

Ifr = I, then a + fJ = ° and, from (AS), a =fJ = ° which 
implies aii = 0, contrary to the hypothesis. 

Ifr = ° then a +fJ = 1 and from (I), (2), and (7) we 
obtainafJ = aii(thena=fO, fJ =fa) and from (4) be = 0. Then 

va 
ii 

va 
b 

va 
satisfies the required conditions. 

a 

~) fJ 

Notice that if a = 1, condition (7) implies 
n(a) = nIb ) = ° and we are back in the first case. 

(C) Suppose now that only nrc) = 0. If ac=fO, multiply­
ing (4) by c on the right we get r = ° and, from (3), bb = 0, 
contrary to the hypothesis. 

If ac = ° then a + r = I (being b =fa by hypothesis). 
Hence, fJ = ° and from (2) aii = 0, contradicting again the 
hypothesis. Therefore, case (C) does not occur. 

(D) Finally suppose n(a)=fO, n(b) =fO, n(c)=fO. From (7) 
it follows that either a or fJ or r must differ from 0. Take 
a =f 0, then it is easy to see that 

va 

va (va 
b 

va 

a 

va 

satisfies the required conditions (1)-(7). This ends the proof 
of Proposition AI. 0 

Proof of Proposition A2: For an element in the generic 
form (A4) to be a nilpotent of J, it must satisfy the following 
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conditions: 

(1) a 2 + aii + bb = 0, 
(2) fJ 2 + aii + ce = 0, 
(3) r + bb + ce = 0, 
(4) be= ra, 
(5) ac = fJh, 
(6) iib = ac, 
(7) a + fJ + r = 0. 

We have furthermore assumed that there are nonzero ele­
ments on the diagonal. Suppose a=f0. Dividing (I) by a we 
get 

a iii a + bb I a = - a = fJ + y. 

Multiplying (4) by b from the left we have 

(bb/a)e= re. 

If c =f ° we get bb I a = r and then fJ = aiil a; we can there­
fore write 

va 

ii 

va 
b 

va 

(va 
a 

va 

a 

fJ (A6) 

If c = ° then from (4) and (5) either fJ or r must be equal to 0, 
otherwise a = b = c = 0, and would not have a nilpotent. If 
r = ° thenfJ = - a and from (5), being c = 0, it follows that 
b = 0. It is easy to check that we can write (A6) in this case, 
just putting b = 0. Analogously, for fJ = 0, we get a = ° in 
(A6). This ends the proof of Proposition A2.D 

Remark AI: This way of writing the trace 1 idem po­
tents and the nilpotents with nonzero elements on the diag­
onal shows immediately that the projective dimensionality 
of any rank 1 element is 16 (complex) (since any rank 1 ele­
ment satisfies, indeed, the same conditions). It also shows 
that a rank 1 element behaves like a singlet and a spin or 
under SOt 10). This fits with the known split 

27=1+10+16 

of J under sot 10) (Ref. 14). 
Ifwe take, for example, the element 

( va _a ~), 
va va 

we can identify the spinor with (a,b), with spinor norm36 

_ 7 

aii + bb = I aaaa + baba , 
a=O 

and the singlet with E ,. 
Extending these considerations to the pair, we get that 

SOt 10) is a subgroup of E6 ,o leaving a point invariant. In the 
example just shown, this is the point (e,)*, where 
e, =(E"EJ 

APPENDIXB 

We give the proof of Proposition 4.4. We shall exploit 
some results from the theory of the real v#'~ , for which we 
refer to Ref. 8. In particular, we use the following facts: 
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(1) Y 4,0 is generated by the set of transformations 
x-lA, x, B), when A andB are traceless matrices in the (real) 
.A'~, Any element in the (real).A'~ can be diagonalized by an 
y 40 transformation, 

, (2) The maximal subgroup of Y 4,0 leaving a trace 1 
idempotent of.A'~ invariant is SO(9), 

(3) The maximal subgroup of Y 4,0 leaving the diagonal 
elements of any matrix of.A'~ invariant is SO(8), The action 
of SO(8) on the off-diagonal elements is 

a 

/3 

where d 3 , d 2 , d. are related by the principle oftriality 

(Bl) 

given d., the SO(8) actions d 2 and d 3 are determined uniquely 
(up to a sign), 

The following SO(8) actions obey the principle of triality 

d. = R a, d 2 = La, d 3 = LaRa, (B2) 

where Ra (La) indicates the right (left) multiplication by a 
unit real octonion a (i,e" aa = 1), 

We want to show first that any trace 1 idempotent in J 
can be brought into the form E. (and therefore into any other 
trace 1 idempotent), 

Let us consider a trace 1 idempotent u in its most gener­
al form: 

U~(= ~;) (B3) 

We can separate the real and imaginary parts of (B3) and 
then diagonalize the imaginary part via an Y 4,0 transforma­
tion. We thus get 

(

a; + ia~ a' 

u' = ii' /3; + i/3 i 
b' c' 

b' ) 
c' 

r; + iri ' 
(B4) 

where a;, ai, /3;, /3 i, r;, ri are real and a', b', c' are real 
octonions. 

Having used an Y 4,0 transformation (B4) must still be a 
trace 1, rank 1 element in J; therefore, we can apply the result 
of the Appendix A and write 

(

va' ) 
Il' = a'/va' (val a'/va' b '/va') , 

b'/va' 

(BS) 

where we have supposed a' # 0 (we could do the same for 
/3':;f0 or r' #0). 

But we have that c = ii' b' / a' is a real octonion. This can 
be the case only if a'ER or a' = b ' = 0 or a' = 0, b ' #0 or 
a' # 0, b I = O. In the first case, we have a real trace 1 idempo­
tent which can be brought in the form E I by an Y 4,0 trans­
formation, 8 In the second case, we have already u' = E I' The 
remaining two cases are equivalent. Let us take, for instance, 
b ' =0. Then 
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(

a
l 

a' 0) 
a'a' 

u' = : ~' : . 
(B6) 

Writing a· = rei¢, it follows that a'a'/a· = se - i¢ where 
s = a'a'/la' lEa. 

We now apply the transformation generated by 

(

-cfJ 
iC= i ~ 

o 
cfJ 
o 

(B7) 

which, according to (4.4) is definitely an 'f/6,0 transforma­
tion. In order to exponentiate (B7) we must consider it as a 
27 X 27 matrix acting on the vector (a, aa' ba, Ca ,/3, r) where 
aa' ba , Ca are the components of a, b, c. It is then easy to see 
that a-e - i¢a, a-a, b-e - i¢ 12b, c-ei¢ /2c,/3-ei¢/3, r-y. 
The transformation (B7) is the generator of the U( 1) group 
leaving E3 fixed. Under such a transformation u' in the form 
(B6) becomes real (octonionic) and can therefore be brought 
into E I by an Y 40 transformation. 

Let us consider now a nilpotent y in J. We know from 
Remark 3.1 of Sec. 4 that there is a trace 1 idempotent u of J 
such that UE V 0+ (y, y*). As we have just proved, we can 
bring U into (a multiple) of E3 so that y goes into 

a 

/3 
o 

(BS) 

If y' is a multiple of an idempotent then we can bring it into 
the form E I • If it is a nilpotent, then/3 = - a. We then split 
(BS) into its real and imaginary part: 

y'~ (~ ~o~, 
o ~) (B9) 

and use next the SO(8) transformation d3 = Ra2/la2 1 bring­
ing the second matrix in (B9) into a real matrix that can be 
diagonalized by a real rotation. Notice that in this way we 
have not affected E3• We shall exploit this transformation in 
a moment. We then use SO(8) again to bring the remaining 
matrix into the form 

r 

-It 

o ~) (BiO) 

when ItEe reR. 
Since y" is a nilpotent we must have 

It 2 + r = 0, that is, It = ± ir and 

( 

1 ± i 
y" =It ~ i ~ 1 (Bll) 

We can now use the U(I) transformation (B7) with 
cfJ = + 17/2 and bring thereforey" into 

y.~ ±u(i ~ ~). (B12) 

which can be brought into a multiple of E. by an Y 4•0 
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transformation. 0 
This proves that r; 6,0 is transitive on the rank 1 ele­

ments (up to a scalar factor). It follows then from Proposition 
4.2 and the considerations following it that r; 6,0 is transitive 
on points. To show that r; 6,0 is transitive on triples ofmutu­
ally orthogonal points is now very easy. 

Suppose U I' U 2, U 3 are the primitive normalized idem po­
tents generating the mutually orthogonal points (u d* ,(u2 )*, 
(u 3 )*, We can map U 3 into e3=(E3,E3 ) and then work with 
SO(8), U(1), and with real rotations in the 2X2 "block" 
V 0+ (e3 ), as we did in the final part of the previous proof, so as 
to leave e3 invariant and bring u I into E I' Once we do this it 
necessarily follows that u2-+E2 and we have completed the 
proof. _ 0 

We finally prove that SO(lO) ® U(l) is the maximal sub­
group of I&' 6.0 leaving a point fixed. Combining this with the 
previous result it follows that the plane v:e are considering is 
the homogeneous space ~ 6,0 /SO(10) ® U(I). We have noted 
already that sot 10) and U( 1) leave a point invariant. We thus 
have only to prove that it is maximal. Consider the Lie alge­
bra of E6 ,o in the Tits' form 

E6,0 = iJ~ Ell Der(J R
), 

where J ~ is the set of traceless real octonionic matrices in J 
and Der(J R) is the set of transformations 
x-+(A ,x,B ), with A and B traceless real octonionic matrices. 
We know that the maximal subgroup generated by a Lie 
algebra in Der(J R) (which is isomorphic to F4•0 ), leaving a 
point invariant, is SO(9), with 36 generators. 

The maximal number of parameters we can get from 
zJ ~ in order to leave, say (e3 )*, invariant are the ten param­
eters of the transformation 

;C ~ ; (~ ~ ~). a + P + r ~ 0, 

which changes e3 just by a phase, thus leaving the point (e3 )* 
unchanged. 

We have therefore proven that the maximal subgroup 
of I&' leaving a point invariant has 46 generators, which is 

~ -
the number of the generators of SOt 10) ® U( 1). Therefore, 
these two groups coincide and the proof is complete. 0 

APPENDIXC 

We want to compare the geometry we have defined in 
Sec. 4 to the Hjelmslev-Moufang plane defined in Refs. 25 
and 30. This is defined on an exceptional Jordan algebra J 
over a split Cayley algebra. We shall, of course, make the 
comparison with the case in which the split Cayley algebra is 
the complex octonion algebra CC;. The definition of the 
Hjelmslev-Moufang plane is the following. 25 For any rank I 
element x of J let x* and x * be two copies of the set 
{axlaEC/! OJ }. The plane is then defined as the set of points 
X*, and lines x* , and the following relations: 

1344 

x. 1 y. ifVx,y = 0, 

x • ~y * (x * ~y * if x Xy = 0, 

x. ~Y. iftr(x,Y) = o. 
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In view of Proposition 4.1 we can compare these rela­
tions with ours by restricting our pairs, just to the V + part. 
We have the following results, whose proof we shall give at 
the end of this appendix (* will be associated to the H-M 
plane, '* to ours). 

Proposition C 1: Let x = (x+,x-) andy = (y+,y-) be 
two primitive normalized idempotents. Then V2(x) C Vol y) 
(i.e., x* Iy*) ifand only if Vx+,y- = O. 

Proposition C 2: x* ~y* (x* ~y*) iff x+ Xy+ = O. 
Proposition C 3: x* ~y* ifftr(x+ ,y-) = o. 
It is clear from these results that there is a very close 

relationship between our plane & and the Hjelmslev-Mou­
fang plane q;' thus defined. This relationship is given by 
associating points of q; , to points of & by 

x.= V2+(X) 

and lines of q;' to lines of q; by 

• x = V 0+ (XOP), 

where xop = (x- ,x+). The objects, points, and lines (as well 
as the point spaces) are, therefore, essentially the same; 
hence, we can reproduce the following results: 

(I) If x * ~y * there is a unique line incident to both of 
them. 

(2) if x* ~y* there is at least one line intersecting both 
of them. 

However, a big difference shows up when we consider trans­
formations on points and lines. We have much more struc­
ture to preserve, namely, the pairing ofa rank I element with 
its complex conjugate. This is reflected in the preservation of 
the standard polarity 1T: x * -+X * we have chosen, and which 
is preserved by the group mapping points into points. In 
other words we can say that the geometry we have defined is 
a Hjelmslev-Moufang plane, carrying a further structure to 
be preserved: the standard (elliptic) polarity 1T. 

We now give the proof of the preceding propositions. 
Proof of Proposition C 1: It follows from Proposition 4.1 

that V2(x)C Vo(Y) if and only if X+EVo+ (y). If X+EVo+ (y) 
then, from Proposition 3.6, Vx ', y = O. Vice versa, suppose 
that Vx + • Y = O. It is easy to see that this implies Vy .x' = 0 
and, therefore, Vy .x + Y - = O. That is Uy x + = 0 and 
tr(x+, y-) = o. Now let us calculate 

Vx+,y y+ 
= tr(x+ + y+,y-)(x+ + y+) - (x+ xY+)Xy- - y+ 

= x+ - (x+ xy+)Xy- = O. 

Therefore 

x+ = (x+ Xy+)Xy-, 

that is x + E V 0+ (y) and the proposition is proven. 0 
Proof of Proposition C 2: We have 

x*~y*(x*~y*) iff (x+Xy+)xy=O. 

Take g +EI&' 6,0 such that g +( y+) = E I • It follows from Pro­
position 4.3 that if X+EV t (y) Ell V 1+ (y) then 
g +(X+)EV 2+ (g(y)) Ell vt (g(y)). whereg = (g+'+.g_). There­
fore, (g+(x+)XEI)XEI = O. Denote d =g+(x )XEI, 

) Notice that d # = 0 [from (1.20)] and d·E I = 0 by Pro-
position 3.3. Hence, 
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0= d XEI = - EI tr(d) - d +Itr(d); 

that is, 

d = tr(d )(E2 + E3)' 

But E2 + E3 is not of rank 1; therefore, tr(d) = 0 and d = O. 
That is, 

(g+(x+)XEt!XEI = O:=>g+(x+)XEI = O. 

Acting now with (g +)-1 and using the fact that the Freu­
denthal product is '(! 6,0 con variant, we get 

(x+Xy+)xy- =O:=>x+xy+ =0. 

The vice versa is obvious and the proposition is proven. 0 
Proof of Proposition C 3: We have that 

V2(x) C Vo( y) €B VI ( y) implies that the component of x on 
V2(y) = 0; that is, tr(x+ ,y-) = 0 and vice versa. 0 

APPENDIX D 

A possible quantum mechanics on a complex vR~ has 
been already investigated by Giirsey, 13 from a different point 
of view. Although some results are similar, the survey of the 
structure in Ref. 13 is different from ours, being oriented 
towards the physical consequences and interpretations of 
the '(! 6.0 symmetry rather than the rigorous examination of 
the quantum mechanical formalism. Because of the physical 
relevance of Giirsey's paper, it seems to us worth while to 
clarify some contradictory points in its mathematical 
formulation. 

In Ref. 13 the states are related to the projectors 
Ux , U" ,(x ±)# = 0, which are in our Jordan pair language 
the Peirce projectors on the V t (x) space. They seem there­
fore to be the same as ours. However, the distance function 
between x and y is defined as 

ax(Y) =! tr(x+y- + y+x-) 

which, as we have seen, is not positive definite and does not 
actually give a well-determined value on any given point. 
Any point, indeed, is defined only up to a phase, 

As a consequence the definition of orthogonality in 
Ref. 13, 

xly if ax(Y) = 0 

is not well posed, 
Another weak point in Ref. 13 is the definition of super­

position. A point X3 is the superposition of XI and X 2 if 

tr(x3,xI Xx2) = 0, (DI) 

We argue that if XI and X 2 are connected, XI XX2 = 0 and 
(D 1) holds for any x 3• The concept of superposition is not 
well defined by the condition (Dl), 

Finally, we notice that there is no discussion in Ref. 13 
about the group U( 1) of the "overall phase" which is definite­
ly a symmetry group of the system. 

The paper by Giirsey is physi~ally ingenious and path-
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breaking; we are indebted to this work for providing ques­
tions and techniques which have been incorporated in our 
work here .. 
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Linear invariants of a time-dependent quantal oscillator 
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Explicitly time-dependent invariants, linear in x and p, are found to simplify the solution of the 
Schr6dinger equation with oscillator-type Hamiltonian. As an example, exact dynamics is 
obtained of the time-dependent quantal oscillator, with damping and subject to external force. 
The invariant and hence the solution of the Schrodinger equation involve only the amplitude of 
the classical damped oscillator. The identity of our solution with a recently obtained result is 
illustrated. A digressive remark on quadratic invariants and the Dirac operator formalism is 
added. 

PACS numbers: 03.65.Ge 

I. INTRODUCTION 

Exact dynamics of the time-dependent quantal har­
monic oscillator (one with time-dependent frequency pa­
rameter) has recently been obtained, using the theory of ex­
plicitly time-dependent invariants. 1.2 Owing to the simple 
relation between the eigenstates of the invariant and the so­
lution of the corresponding Schr6dinger equation, there 
have also been attempts3 to obtain general invariants, par­
ticularly for oscillator-type Hamiltonians. In the above 
works, the invariant is constructed as a quadratic function of 
x and p, originally by inspection of classical trajectories. I 
The invariant involves a single function p(t), related to the 
amplitude of the classical free oscillator; pit ) satisfies a non­
linear differential equation, which should be solved in practi­
cal applications. The spectrum and eigenstates of the invar­
iant are obtained using an operator formalism analogous to 
Dirac's.4 

We note that the solution can be accomplished, some­
what more directly, using invariants linear in x andp. In the 
first place, the linear invariant is readily diagonalized and 
involves only the amplitude b (t) of the corresponding classi­
cal oscillator. The spectrum of the invariant is continuous, 
but with a suitable choice of the initial phase and initial con­
ditions on b (t ), the evolution of an arbitrary state can be con­
veniently obtained through the usual Fourier expansion. It is 
hoped that the use oflinear invariants will simplify problems 
with more general quadratic Hamiltonians. 

In the following section, we consider, as an example, the 
Hamiltonian appropriate to a damped oscillator, subject to 
external force. The invariant is constructed as a linear func­
tion of x and p, its eigenfunctions readily found and the 
Schrodinger wave function compared with the recent re­
sult. 2 In Sec. 3, a remark on quadratic invariants and the 
Dirac operator formalism is made, which is of related 
interest. 

II. THE INVARIANT AND SOLUTION OF THE 
SCHRODINGER EQUATION 

We consider the Hamiltonian2 

H (t) = e - rtp" /2 + e'l {(VC(t )x" /2 + xf(t I}, (2.1) 

where r is the damping constant, (V the time-dependent fre­
quency parameter,J(t ) the external force, and the mass has 

been set equal to unity. We wish to construct a Hermitian 
invariant of the form 

I (t ) = a(t)x + b (t )p + c(t). 

Requiring that I obeys the equation 

aI/at + (l/ili)[I,H] = 0, 

we are led to the conditions 

Ii = bert{t}(t ), 

Ii = -ae"- rt, 

(2.2) 

(2.3) 

i: = be'1(t ). (2.4) 

The first two of these equations combine to read 

b + rb + (V2(t)b = 0, (2.5) 

which describes the amplitude of the classical damped oscil­
lator. Any particular, real solution of this equation gives an 
invariant 

I (t ) = b (t )p - be'lx + crt ), 

where 

c(t) = i dt' b (t ')erlf(t 'I· 

(2.6) 

Any real number A. is an eigenvalue of I (t ) and the corre­
sponding eigenfunction 

tP.dx,t) = (2~ y/2 exp( :n {ber/x2/2 + (A. - c)x}); 

(2.7) 

we have 

(2.8) 

The theory of explicitly time-dependent invariants 1 has 
shown that the eigenfunctions of the invariant, rephased by a 
time-dependent phase factor a..\ (t), satisfy the Schr6dinger 
equation, where a..\ (t) are determined from 

(2.9) 

The matrix elements on the right hand side can be found 
from the explicit form of I/J..\ in Eq. (2.7). We get 

da;, 

dt 
(2.10) 

1346 J. Math. Phys. 23(7), July 1982 0022-2488/82/071346-03$02.50 @ 1982 American Institute of PhYSics 1346 



                                                                                                                                    

The following rephased eigenstates of the invariant satisfy 
the Schrodinger equation: 

I/I(A;x,t) 

_.1. ( ) ia"lt] 
='f'" x,t e 
= (l/21rlib )1/2X exp{i[ a,,(to) + A (t)A. 2 - B(t)A. - CIt]) 

X exp (i/bll) {hertx2/2 + (A - c)x }), (2.11) 

where the first exponent represents the integral of Eq. 
(2.10) and a" (to) is an arbitrary initial phase. Note 
A (to) = B (to) = C (to) = 0, to being the initial time. 

When the amplitude b (t) vanishes, say at time t l , the 
eigenstates of the invariant (2.6) reduce to 

e - 't./2 { (C(tl) - A)e - ,t, } 
1/1 ,..(x,t I) = . 8 x -. , 

vb (t l ) b (t l ) 

(2.12) 

which satisfy Eq. (2.8). This is also the limiting form ofEq. 
(2.7) as b (t )-+0. The divergence occuring in Eq. (2.10) is 
resolved as follows: Q" diverges5 as (t - t l )-2 and hence 
I" =a" (t )b (t) is finite at all times. Invoking this in Eq. 
(2.10), we have 

bi. .. - hi" = - [(A - c(t)j2/2I1je-r/. (2.13) 

The first term is easily seen to vanish at t = t" leading to 

f (t) = (A _.C(t l ))2 e- rt ,. (2.14) 
A I 211b (t

l
) 

The rephased eigenstates are 

I/I(A;x,t) 

= 1 exp {_l_' [ber/x2 12 + (A - c)x + I" (t)1I ] }. 
V 21rlib bll 

(2.15) 
When b (t ) vanishes, the eigenstates can be cast in the form 
of the delta distribution as in Eq. (2.12). In practical appli­
cations, Eqs. (2.13 )-(2.15) will be operative in place ofEqs. 
(2.10) and (2.11), for all times. 

The evolution of a general Schrodinger state is de­
scribed by a linear combination of the solutions in Eq. 
(2.15): 

I/I(x,t) = f~ 00 dAq;" I/I(A;x,t ), (2.16) 

where 
rP" = (1/1" (to) 11/1" (to), 

II/I(to) being the initial state. As a convenient choice, let 
I" (to) = h (to) = c(to) = 0 and b (to) = 1, 

whence from Eq. (2.15), we see 

1 foo . q;" = -- dx exp( - lAx/Ii)¢(x,to), 
v21rli - 00 

(2.17) 

which are the Fourier components of the initial state. 
Since choice of the invariant does not inftuence the 

solution obtained, I we can illustrate the identity of the 
above solution with the one recently reported2 using qua­
dratic invariants. Consider, for the initial state, a simple 
case 

I/I(x,to) = Ke - irx'/4. (2.18) 
The mixing coefficients are then 

q;" = ~ (41T)1/2 exp(iA 2), 
v21T r r 
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where 11 is set equal to 1. The solution of the Schrodinger 
equation (2.11) reduces to 

( 
i )1/2 (.{R rB2 }) 

I/I(x,t) = K b (1 + rA ) exp I 2' - c(t) - 4(1 + rA ) , 

where 

R = x2(be
rt 

_ r ) +.::.. (~- 2C) 
b 2b 2(1 + rA) b 1 + rA 

This is in complete agreement with the time-evolving Gaus­
sian form given in Ref. 2. 

III. REMARK ON QUADRATIC INVARIANTS 

It is clear that one can construct a quadratic invariant 
as a product oftwo linear ones, corresponding to the linearly 
independent solutions ofEq. (2.5). Let II and 12 be the invar­
iants in the form ofEq. (2.6), corresponding to solutions b l 

and b2 of Eq. (2.5); their commutator 

K I=[II,l2] =il/{bl(t)b2(t)-b2(t)bl(t)}ert, (3.1) 

is independent of time. This property ofEq. (2.5) is also re­
quired, since the commutator is (trivially) an invariant. Scal­
ing down II and 12 by (Ktl 1/2 we have [11,12] = 1. One can 
choose IzII + ~ as the required quadratic invariant, II and 12 
being the annihilation and "creation" operators. Note, how­
ever, that one should not limit b l and b2 of Eq. (2.5) to real 
solutions to obtain a Hermitian quadratic invariant. As the 
usual prescription, one can demand 12 = It, which is ac­
complished with the choice bl(t) = b r(t). We now have the 
quadratic invariant in the standard form, for which the 
Dirac operator formalism applies. 1.2 

For the free, undamped oscillator [r = OJ(t ) = 0], C (t ) 
can be chosen to be zero (Eq. (2.4)], when we get a homogen­
eous quadratic invariant by the above procedure. In the 
more general case we considered, the quadratic invariant 
would be an inhomogeneous function of x and p. These are 
the forms used in Refs. 1 and 2, respectively, albeit starting 
directly with the quadratic form. 

Below we present a digressive note on the Dirac meth­
od4 of obtaining the spectrum and eigenstates of the 
Hamiltonian 

(3.2) 

Our aim is to show that the results can be deduced from 
considerations of the time-dependent invariants of the prob­
lem. The two linear invariants of this simple example, corre­
sponding to the independent solutions of the classical equa­
tion [Eq. (2.5) with r = 0, cu(t) = cuo], are 

II = (p - icuoX)eiwo', 

(3.3) 

12 = (p + icuoX)e - iwo
', 

which are mutually adjoint and proportional to the conven­
tional annihilation and creation operators, respectively. 

Let 11/1) be an arbitrary Schrodinger state, expanded in 
the complete orthomormal set of stationary states: 

11/1) = LCnln)e-IEHtlli. (3.4) 
n 
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The energy eigenvalues En and stationary states In) will be 
deduced from the invariant operators. The expectation value 
of the invariant in the above state should be independent of 
time, for arbitrary CIl • The expectation value of II is 

Lc!cn <ml-i~ - iWoXln) 
nm ax 

{ [
Em - En ] I X exp i Ii + Wo t . (3.5) 

This implies that either 

(3.6) 

or 

Em - En + liwo = O. (3.7) 

Since Wo > 0, Eq. (3.7) cannot be fulfilled if Em >En. 
Therefore, 

(m\ili! +iWoX\n) =0 ifEm>E". (3.8) 

We note that the spectrum is bounded from below (Ho being 
positive definite) and is discrete (due to bounded motion of 
the particle). If 10) is the ground state, by Eq. (3.8) 

(m I iii ! + iWoXla) = 0 for all m. (3.9) 

Since the stationary states constitute a complete set, Eq. (3.9) 
implies 

(Ii! + WoX }/lo(X) = 0, (3.10) 

which determines the ground state. If 11) be the first excited 
state, Eq. (3.8) requires 

{mlili~ +iWoXll) =0 ifm¥O. (3.11) 

One possibility is that (",(a/ax) + iwoX) I 1) = a. However, 
the ground wavefunction is uniquely determined by the 
same equation (3.10). Hence we must have 

(al i"-J; + [WoX 11) ¥O, 

whence Eq. (3.7) gives 

EI=Eo+liw. 
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(3.12) 

(3.13) 

Equation (3.11) and (3.12) imply 

(Hi ~ + iwox )t/lI(X) = ct/lo(x), (3.14) 

where c is determined by a suitable phase convention and 
normalization. The adjoint form ofEqs. (3.11) and (3.14) 
leads to the useful equation 

(iii :x - iwoX )t/lo(X) = C·t/ll(X), (3.15) 

which gets us the first excited state. The procedure is contin­
ued for higher states similarly. 

The above results are readily deducible, starting from 
any invariant not proportional to the creation or annihila­
tion operators. For example, one might consider the Hermi­
tian invariant 

13 = P coswt + xw sinwt. (3.16) 

Constancy of the expectation value < t/I 1/31 t/I) in the arbitrary 
state in Eq. (3.4) again leads to Eqs. (3.6) and (3.7), on requir­
ing that (d Idt) (t/l113 I t/I) vanish identically. This completes our 
remark on quadratic invariants and the Dirac procedure. 

IV. CONCLUSIONS 

Solution of the Schrodinger equation for oscillator type 
systems can be obtained rather directly using linear invar­
iants. We consider the case of a damped oscillator, acted on 
by an external force and illustrated the identity of our solu­
tion with a recent result. A way of contructing quadratic 
invariants in the standard form, starting from linear ones, is 
noted. As a point of related interest, the spectrum and eigen­
states of the ordinary oscillator Hamiltonian are deduced 
from consideration of time-dependent invariants. 

'H. R. Lewis and W. B. Reisenfeld, J. Math. Phys. 10, 1458 (1969). 
'D. C. Khandekar and S. V. Lawande, J. Math. Phys. 20, 1870 (1979). 
'Po G. 1. Leach, J. Math. Phys. 18, 1608, 1902 (1977). 
·P. A. M. Dirac, Principles a/Quantum Mechanics (Clarendon, Oxford, 
1958), 4th ed. 

'This follows from the regularity of b (t). If Ii (t) vanishes too, there is no 
future classical motion. 
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We find the most general form of the key function for an.Jf".Jf"space whose curvature on the 
right side is algebraically degenerate. 

PACS numbers: 04.20.Cv, 02.40.Ky 

I. INTRODUCTION 

Jf' Jf' spaces are the complexified Riemannian struc­
tures which fulfill the Einstein equations and have algebra­
ically degenerate conformal curvature from one side, e.g., 
the self-dual part (the "left side"). The structure of such 
spaces is determined by a potential function iV, the key func­
tion, which must satisfy a certain nonlinear differential 
equation. 

All the algebraically degenerate real solutions of the 
Einstein equations correspond to a real slice of an Jf' Jf' 
space whose curvature is of the same algebraic type on both 
sides. Also, as R6zga 1 has shown, a necessary condition for 
the existence of a real slice with signature (+ + + -) of a 
complex solution is that its algebraic type be the same from 
both sides. Therefore, employing the theory of Jf' Jf' spaces 
in constructing algebraically degenerate real solutions, it is 
of particular interest to determine the Jf' Jf' spaces which 
also have the right side algebraically degenerate. 

This paper constitutes an introductory step towards 
this end, by determining the most general form of the key 
function which makes the right conformal curvature alge­
braically degenerate. 

In Sec. II we give a brief description of the results and 
formalism for Jf' Jf' spaces and deduce the basic equations. 
In Secs. III and IV we find the form of the key function for all 
possible special algebraic types on the right side. 

II. THE h FUNCTION 

As was shown in Ref. 2, and in a more detailed form in 
Ref. 3, the algebraic degeneracy of the conformal curvature 
of one side, together with Einstein's vacuum equations, im­
ply the existence of a congruence of two-dimensional sur­
faces which are totally null ("null string"). In fact, if a A is a 
multiple Debever-Penrose spinor for the left conformal cur­
vature, i.e., CABCD = = alA a B!3CYD i' where CABCD are the 
spinorial components of the self-dual part of the conformal 
curvature, then the system of differential equations4 

aAgAB=O (2.1) 

defines a null string. 
Associated with such a null string there existS canonical 

coordinates qA and pA such that the metric has the form 

ds2 = - ~gAB ® gAB, (2.2) 
s 

a'On leave of absence from the University of Warsaw. Warsaw. Poland. 

with 

(2.3) 
gA = _ V1(dpA _ QABdqB)' 

The null string is then defined by d~ = O. Einstein's vacuum 
equations imply that </J = fA pA + k, where fA and k are 
functions of ~ only, which can be made constant by using 
the freedom in the choice of the canonical coordinates. Then, 
if KA is another constant spinor such that 7=K A fA does not 
vanish 

QAB= _(</J4(</J-3W),IB).AI+iJ-tlr2 )</J3K AK B, (2.4) 

where Il is a function of ~ only. The key function W must 
satisfy 

lr(</J-2iV.B).A(</J-2W). _A._I(Jff\.A 
2 J.A 0/ ~) 

- q 
- Il</J 4Jq,</J -IJq,</J -I W 

+ ~[77fC - (</J + k )KC] JIl = NA pA + Y (2.5) 
27~ Jqc 

with the abbreviations 
n=KApA' . .4 = J/JpA, Jq, = (Vr)KAJ/JpA, and where NA 
and yare functions of qA only. 

The anti-self-dual part of the conformal curvature in 
the tetrad (2.3) is given by 

(2.6) 

Therefore, if the conformal curvature is also right-degener­
ate, the key function must be such that 

(2.7) 

This relation restricts the dependence of WonpA only. Thus, 
at this stage, we can ignore the dependence on qA, which has 
to be determined through the hyperheavenly equation (2.5). 

Since we are interested in the pA dependence only, and 
since in two dimensions each vector is proportional to a gra­
dient, we can write 

(2.8) 

where W - iV - (.u/472)</J 2772 and h is a function such that 
h.A #0. The integrability conditions for (2.8) are 
W,ABCI;D = 0; therefore, contracting with h ,A, we have 

o - h ,A W- ... . ,D - (h ,A W- ),D h ,AD W-- ,ABCD - ,ABCD - ,ABCD (2.9) 
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or 

H(h .A/3A )h.11AcYiJ) + (h .ArA )h.11Ac/3D 1 1'D 

- h .ADh.IA h.B/3crD I = O. (2.10) 

Ifboth spinors /3A and rA are proportional to h.A' Eq. 
(2.10) implies 

(2.11) 

If either one of /3A or rA is proportional to h.A' say /3A' ab­
sorbing the proportionality factor in r A and contracting Eq. 
(2.10) with h .R, the condition (2.11) is obtained. Finally, if 
none of the spinors/3A or rA is proportional to h A' contract­
ing eq. (2.10) with h .Bh .c, one obtains, once agai~, Eq. (2.11). 

Since the anti-self-dual part of the conformal curvature 
is algebraically degenerate, there exists another null string 
defined by 

h.B gAB = 0, (2.12) 

with gAB given in (2.3). The two null strings intersect each 
other along a congruence of complex null geodesics which 
have a tangent vector defined by 

. J 
V =h .A -. • (2.13) 

JpA 

If follows that v[ h ] = 0; therefore, the congruence of geode­
sics is given by q A = const., h = const. 

The twist of this congruence is determined by the 3-
form 

T=e 1\ de , (2.14) 

where e = H.A ,d~. Thus 

T = - h.ABh .AdpB 1\ dqi 1\ dqi . (2.15) 

We shall now integrate Eq. (2.11). First we write it in the 
equivalent form 

h.ABh·A = J..h. B , (2.16) 

where J.. is some function; multiplying this equation by dpB, 
one has 

- h.i dh. i + h.i dh. i = J.. dh . 

By assuming H.i =1= 0, Eq. (2.17) can be written as 

d(h.ilh. i )= - [J..I(h.:d]dh 

(2.17) 

(2.18) 

which implies that h.i Ih,i is some function of h. Therefore, 
we can write 

(2.19) 

where aA (h ) is a non vanishing spinor. 
By setting a A = Ii A (a dot denotes derivation with re­

spect to h ), Eq. (2.19) takes the form b A A = O. This means 
that the I-form b A dpA is closed; therefor~, there exists, local­
ly, a function b such that b A dpA = db. Thus 

d (b - b A pA) + Ii ApA dh = 0 . (2.20) 

This implies that bo==.b - b A pA is a function of h. Substitut­
ing bo in (2.20), we get 

(2.21) 

Remembering that bA = aA and denoting bo as ao, we have 

A (h )=aA(h )pA + ao(h) = O. (2.22) 
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Differentiating (2.22) with respect to pA, one has 

A (h)h.A +aA(h)=O, 

where 

A (h )=aA (h )pA + ao(h ) 

(2.23) 

(2.24) 

is assumed to be different from zero. Under this last condi­
tion Eq. (2.22) defines h as a function of pA giving the general 
solution of (2.11). In fact, from (2.23), it follows that 

h.AB.h·A = [(InA ).Ah.A ]h.B . (2.25) 

This solution has two branches: the general, G, where 
aA aA =1=0, and the special, S, where aAaA = O. Due to (2.15) 
and (2.23), branch G corresponds to T =1=0 while branch S 
corresponds to T = O. In the case S, there is a function o(h ) 
such that aA = oaA, and therefore aA = v(h )HA' where HA 
is a non vanishing constant (i.e.,pA-independent) spinor and 
v(h )=1=0. Hence in branch S, the solution is given by 

A (h )==.HA pA + ao(h ) = 0 , (2.26) 

provided that 

(2.27) 

111. THE CASES N AND III 

In this section we consider the case where the right con­
formal curvature has, at least, a triple Debever-Penrose 
spinor; therefore 

W. ABCD = h.IA h.B h,C/3D) , (3.1) 

where h is given by (2.22). By using Eq. (2.25), the integrabi­
lity condition W,ABCD· D = 0 reduces the equation 

/3B·Bh,A + 3/3B h:~ + 6h ,B(lnA ).B /3A + 3h,B /3A,B = 0 .(3.2) 

By using the identity 

/3 . ,B - 8 . Bp . ,R + /3 iI . A-AR .A' (3.3) 

Eq. (3.2) takes the form 

6[/3B h:~ + h ,B(lnA ),B /3A] + 4/3B,Bh,A - 3(h .B/3B).A = 0, 
(3.4) 

which, as a consequence of Eq. (2.23), is equivalent to 

[ - 12/3B(lnA ),B + 6(,4'IA )/3B h·B + 4/3B,B] 

Xh. A - 3(fJBh ,Bl,A = 0, 

where 

(3.5) 

,4' ==.aA pA + ao . (3.6) 

Therefore, if;=V3Bh ,B is a function of h. If if; = OPA is pro­
portional to h A and the right conformal curvature is of type 
N. In this cas~, by writing/3A = - rA 3h,A' Eq. (3.5) implies 

rBh.B = 0, 

i.e., r is a function of h. 
Using Eq. (2.23), we have 

W,ABCD = r(h )aAaBach.D 

= [ r r(t )aA (t )aB(t )adt) dt ].D . 

Hence, if A (t ) is defined by 

A (t )=aA (t )pA + ao(t) , 

J. F, Plebanski and G. F. Torres del Castillo 
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it follows that, since A (h ) = 0 

W,ABCD = {(l/3!) r r(t)[A (tW dt },ABCD . 

Thus, if the right curvature is of type N,6 

W = ~ fh r{t)[A (t ) Pdt + &' , 
3! 

where 

(3.10) 

(3.11) 

[j"=(l/31)AABC pApBpC + (l/2!)BABPApB + CA pA + jj 
(3.12) 

and A ABC ,B AB ,C A' and jj are functions of the c/ only. 
If tP#O, the right conformal curvature is of type III. 

Within the branch G one can write tP as 

(3.13) 

where s is a function of h. Recalling the definition oftP, (3.13) 
implies that PA must be of the form 

/3A = - 4sAaA + [sA' - sA + riA 2]aA , (3.14) 

where r' is some function. Substituting (3.13) and (3.14) in 
(3.5), one concludes that r' is a function of h. By proceeding 
as in the previous case, it follows that (setting r = r') 

W = (l/2!) r sit )[A (t )]2 dt + (l/3!) 

X r r(t)[A(tWdt+ &'. (3.15) 

In branch S the function h is given by (2.26), and tP can 
be represented as 

where s = s(h ). Introducing now a spinor fA such that 

HAIA = 1 , 

one can express P A as 

/3A = 4sa~ fA + [(sao - sao)fB pB + r" a~ JHA . 

(3.16) 

(3.17) 

(3.18) 

Equation (3.5) implies that r" is a function of h. Dropping 
primes, one finds that, in this case, W must be of the form 

W = (l/2!)(IB pB) r S(t)[HA pA + ao(t )J2dt 

+ (l/3!) r r{t )[HA pA + ao(t) Pdt + &'. (3.19) 

IV. CASES D AND II 

We shall now assume the right conformal curvature to 
be of type D or II. Therefore, 

(4.1) 

where h is given by (2.22), and h .Rp Rand h .Ry R do not van­
ish. Using Eqs. (2.25) and (2.23) and the identity (3.3) for the 
derivatives of PA and YA in the integrability condition of 
(4.1), and contracting then with h ,Bh .c, one has 

h .Bh·D Uh ,Cyc) [2PD,B + (InA ),BPD] 

+ (h .Cpc) [2YD,B + (InA ),BYD] J = 0 (4.2) 

This last equation implies thatX=bA 3h ,ch ,DPCYD is 
a function of h. Within branch G the function X can be writ-
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ten as 

X= -(aAaAfu, (4.3) 

where u is a function of h. This means that,BlcYD) is of the 
form 

12 u " 4 u .. P(CYD) = - ........,...aCaD - --:-a(CaDI 
A A 

+ 4[ 3~'~ - 2 ~ + V]aICa D) 

[
Iii (A' )2U A'u ii ] 

+ 3]2"-3'A3+]2"-A+ w aCaD , 

(4,4) 

where v and ware some functions and A' = ii'R pR + ii~. 
Substituting (4.4) in (4.1), we have, after integration of 

the terms with u, Ii and ii, 

W,ABCD = [ fh u(t)A (t) dt] .... + h.(A h,Bh,CODI ' (4.5) 
,ABCD 

where 

OD = - A (4vaD + waD)' (4.6) 

Thus 

[W-fh U(t)A(t)dt] .... =h.(Ah,Bh.CODI' (4.7) 
.ABCD 

but this is precisely the problem solved in Sec. III; therefore, 
we conclude that 

W= r u(t)A (t)dt+ (l/2!) r s(t)[A(tWdt 

+ (1/3!) fh r(t)[A (t lP dt + &' (4.8) 

for some functions sand r. 
In branch S, writing X as 

(4.9) 

where u = u(h), one finds thatp(cYD) must be of the form 

PlcYD) = - 12uaofc lD + [8aO(lB pB)(ulao)' + v JH1CID) 

+ ( - ao(/B pB)2(l/ao(ulao)')' + w JHCHD (4.10) 

for some functions v and w. It follows that 

{W - (/B pB)2 r u(t )[HA pA + ao(t)] dt }.ABCD 

= h.IAh.Bh.co'vl ' (4.11) 

where 

o b = - ao(vlo + wHo); (4.12) 

therefore 

W=(lBpB)2 r u(t)[HApA+ao(t)]dt 

+ (l/2!)(IB pB) r S(t)[HA pA + ao(tJPdt 

+ (l/3!) r r{t )[HA pA + ao(t )rdt + &'. (4.13) 
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Expressing r, s, and u as 

r(t) =~( _~~)3 R (t) 
dt ao dt 

sIt) =~(_~~)2 SIt) 
dt ao dt 

(4.14) 

U(t)=~(-~~) U(t) 
dt ao dt 

and integrating by parts (4.13), one obtains 

W= U(h)(lopO)2+S(h)(lopO)+R(h)+ 9. (4.15) 

V. CONCLUSIONS 

The general expressions for W given in (4.8) and (4.13) 
amount to the solution of a rather involved system of partial 
differential equations offourth order, in two variables. This 
system is obtained from (2.6) by requiring that the Penrose 
polynomial 

P(t 2lt i) = (lit i)4 CAocD tA to t C t D (5.1) 

has mUltiple roots. For example, if the Penrose polynomial 
(5.1) has a triple root (i.e., the right conformal curvature is of 
type III), W must satisfy the system of equations 

W:iiii W:iiii W:iiii 

W:iiii W:iiii W:iiii =0 (5.2) 

W: iiii W:iiii W:iiii 
and 

1 W:iiii 

W:iiii 

W:iiii 1 
W:iiii 

= 41 ~iiii 
~iiii 

~iiiil 
~iiii 

(5.3) 
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If the 2X 2 determinants in (5.3) vanish, the right conformal 
curvature is of type N. 

Our method has permitted us to solve these conditions 
determining the analytic dependence of Won the variables 
pA-related to the affine parameters of the string-leaving 
open the dependence of Won the variables qR, which re­
mains to be determined through the JY' JY' equation (2.5). We 
have undertaken this task for various algebraic types on the 
right, and the results will be published elsewhere. 7 
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New application of self-similar generalizations of homogeneous cosmological models is shown in 
the problem of nonstationary nonspherically-symmetric accretion of self-gravitating gas on the 
center. For self-similar Bianchi types II and III, solutions of the system of Einstein equations are 
reduced to some dynamical system of small order. A number of exact solutions in empty space and 
for the stiff equation of state of matter is found. 

P ACS numbers: 04.20.Jb 

1. THE MAIN EQUATIONS 

In this paper we consider a class of solutions of the Ein­
stein equations, for which the metric on the space-time mani­
fold M4 has a three-dimensional group of scale 
transformations: 

(1) 

Here the map G-f(G) is a homomorphism of the Lie group 
G into the multiplicative group R ~ . As was shown at first 
by Eardley, 1 for every three-dimensional group G of Bianchi 
type I-VII h there are self-similar generalizations of the kind 
(1) of homogeneous cosmological models, for which the 
group G acts onM4 with three-dimensional spacelike orbits 
and the homomorphismf(G) is a nontrivial one. In Ref. 1 
solutions of type (1) were applied only in cosmology, as gen­
eralizations of homogeneous cosmological models. In this 
paper we investigate another application of solutions of the 
type (1) to the problem of nonstationary and nonspherical 
accretion of a self-gravitating gas onto an accreting center in 
general relativity. 

Let us consider two metrics on M4. The first metric is 

ds2 = gl'''wl'w'', fL, v = 0,1,2,3, (2) 

where wI' are one-dimensional forms andw l = dp (p is some 
function on M4), and gl''' are the metric components. The 
second metric is 

(3) 

where a is a constant. Let w i
j and wj denote the connection 

components of the metrics (2) and (3) which, as is well 
known,2 satisfy the following equations: 

dwi + w~ 1\ Wi = 0, 

dgij = wij + wji' 

We obtain 

(4) 

(5) 

Lemma 1 :The connection components w~ of the metric 
(3) are connected with connection components w~ of the 
metric (2) by the following relations: 

Wl'1 = Wi"1 + awl' - agl'lglrwr, 

(ijll' = wll' - agllg I'rwr, 

-I I +2ad II r WI=W I p-ag glrw. 

(6) 

(7) 

(8) 

(9) 

al Permanent address: V. A. Steklov Mathematical Institute of Academy of 
Sciences of USSR, Moscow, USSR. 

wherefL, v¥= 1, r = 0,1,2,3. 
The proof of Lemma 1 consists simply in verifying the 

relations (4) and (5) for the connection w~ and the metric (3). 
As it is well known,2 the curvature forms RI' " of the connec­
tion wI'" have the following form: 

RI'" = dwl'" + wI' J3 I\w P", 

RI' RI' al\ J3 " = "apw W, 

(10) 

(11) 

where R I'vap is the Riemann tensor. 
Lemma 2: The curvature form iiI' y of the metric (3) is 

connected with the curvature form W y of the metric (2) by 
the relations 

W" = (RI'V - a 2g l1w l' I\w" + a 2gl'ldp I\w" 

- a 2gv1dp I\wl' + ag"Pwl' I\w1
p 

- agl'Pw" 1\ w1p)e - 2ap , (12) 

where fL, v, /3 = 0,1,2,3. 
The proof of Lemma 2 consists in direct verification by 

using definitions (10) and (11) and relations (6), (7), (8), and 
(9). Note that the differential forms wI' in general are not 
closed and 

(13) 

The connection components w~ of the metric (2) have the 
following form2

: 

I' _ lal'P( + _ \,.,a 
W ,,- 20 gp",a gPa,,, g"a.P /U' 

+!( - CI'"a + gl'P(g"rcrpa + garcrp,,))wa, 
(14) 

where gap.r denotes the corresponding Lie derivative. 

In the following we suppose that the metric (3) possesses 
a three-dimensional group of transformation (1), acting on 
M4 with three-dimensional orbits, and the differential forms 
w I' are invariant under this action. The homomorphismf( G ) 
has the form 

fIG) =e2aA
(G), (15) 

whereA (G)issomehomomorphismG-R I. Under these as­
sumptions the basis of G-invariant differential forms w I' may 
be chosen in such a way that 

goo = ± 1, gOi = 0, gij =gij(XO), i,j,=/=O, 

and the orbits of the Lie group G are given by the conditions 
XO = const. In this case the coefficient cal'''' for a,fL,v¥=O are 
the structure constants of the Lie group G, By using the 
formulas (12) and (14) it is possible to derive the Ricci tensor 
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components R j = R iaja for the metric (3) and the Einstein 
tensor components, which have the following form: 

ROo -!R = e- 2ap IAgOO(x\,rPp - ,rPyXYp) -! PPp 

+ aZgll 
_ 2ag1YCPyp j, (16) 

Rox = - !(XYpCPYX - XYxC!"!"y) + axlx' (17) 

R\ - !D\R =e- 2ap !p\ _gOO(1!2\g\1/2}(lg\1/2X\) 

+ a 2
( - 2g11D\ + 2~Wy) 

+ a(2uXy + glYCPypOXy) 

- !DXy(PPp - gOO)trp 

+ !(,rPpXYy + XYp,rPy)) 

- 6a2g 11 + 6ag IYC!"y!"))' (18) 

Her~ we use. the following notations: 13, r,jL, V,X,Y = 1,2,3; xY p 

= gp"gCTY; gp" = dgp"ldxO; g = det (g !"v); the Ppy is the 
Ricci tensor of the metric g !'v' restricted to the orbits of the 
Lie group G: 

A A A 

Ppy = - rXpyryp + cyYXrXpy, 

rXpy =!( _ CXpy +gXY(gpzCZyy +gyzCZyp )), 

u _lglY(g cP +g cP ) xy-Z xp yy yp p' 

(19) 

(20) 

(21) 

u\ =!glY(C\-y +gXZgypCPyz)' (22) 

Note that the Einstein tensor for the metric (3) has been cal­
culated at first by Eardley, I by using another method. From 
formulas (16), (17), and (18) it follows that in the case under 
consideration the Einstein tensor components depend on 
only one variable xO. If the distribution of matter is also G­
invariant, in the sense that the stress-energy tensor Tjj de­
pends only on one variable x, then the whole system of Ein­
stein's equations is reduced to some system of ordinary 
differential equations. 

The hydrodynamical equations 

T\k =JkT k j -rmikTkm +rkmkTmj, (23) 

for the G-invariant solutions under consideration, have the 
following form: 

Tk =_1_(JlgII/2TOj) 
I,k Igll/2 Jxo 

+2aTlj -CPypTYj -rmikTkm. (24) 

The last term in (23) has the form 

rmokTkm = !XypTPy, 

rmlkTkm =aT+rmlkTkm' 
A 

rmukTkm =rmukTkm' 

where (J' = 2,3 and 

(25) 

(26) 

(27) 

r m
Yk =!( - cmYk +gm.5(gYXcx.5k +gkXCx.5Y))' (28) 

Note that C 'Jk = 0 if one ofi,j,k equals zero. 
The procedure for deriving the system of ordinary dif­

ferential equations from the Einstein equations 

R j - !o~R = T~, (29) 

for the hydrodynamical stress-energy tensor Tj, consists in 
the following: from the equations R Oi = TOj and 
Roo - ~ goo R = Too we derive the expressions for the veloc­
ity components u j and the energy density through the metric 
components g!'v and their first derivatives g !'v' Then after 
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substitution of the derived expressions into Eqs. (29) for 
i,j,/=O we derive a closed system of second-order equations 
only for metric components. This system may be trans­
formed by a standard way into a dynamical system (system 
of first-order equations) and determines completely the evo­
lution of the self-similar metric (3). 

2. THE MODELS OF NONSTATIONARY ACCRETION 

In the paper by Eardley,I self-similar solutions of the 
type (3) were considered as generalizations of homogeneous 
cosmological models. In this case it is supposed that 
goo = + 1, that is the variable XO is interpreted as time and 
the metricgij depends essentially upon the time. In this work 
we consider also the other case, when goo = - 1, the func­
tion e ap has the meaning of a radial coordinate R = e ap and 
the metric gjj depends essentially on the spacelike coordinate 
xO; dependence on the other coordinates is determinated by 
the structure of the group G. For explanation of the physical 
meaning of these solutions, let us show two solutions in emp­
ty space for groups of Bianchi types I and III: 

ds2 = R 2 cos2 XO dt 2 _ dR 2 _ R 2(d (XO)2 + sin2 XO difJ 2), 
(30) 

ds2 = R 2 sin2 XO dt 2 _ dR 2 - R 2(d (XO)2 + e' sin2 XO difJ 2). 
(31) 

From the exact form of these solutions it follows that the 
variablexo is an angle variable ( - ol2<;xo <;8/2) and thatthe 
metric of space at infinity (R _ ~ ) is the Euclidean one. In 
the following we shall consider also self-similar solutions, for 
which the variable XO is an angle variable and the variable 
R = e ap is a radial coordinate, and which are nonstationary, 
i.e., they depend on time t. So we are interested in solutions, 
which depend on three variables: xO, R = e UP

, and t. These 
solutions may be applied to models for nonspherically-sym­
metric accretion of gas onto the center. In these solutions the 
increasing of the gas mass in the neighborhood of the center 
as a result of gas accretion, leads to the nonstationarity ofthe 
metric. This nonstationarity may have, for example, the 
form (31). Note that such self-similar solutions have no self­
similar analogs in Newtonian theory, because in Newtonian 
theory all self-similar solutions, which depend essentially on 
the angle coordinate, are stationary (there are the conical 
flows of gas). Let us find which nonstationary self-similar 
solutions of the form (3) at goo = - 1 can exist. For that we 
use the list of generators and invariant differential I-forms 
for three-dimensional Lie algebras G.) Let 51,52,53 be the 
basis of generators in G. 3 For construction of self-similar 
solutions the presence of a homomorphism 

!.:G-R I (32) 

is necessary. For this homomorphism!. [G, G) = O. For all 
models of types IV-VII the generators 51 and 52 belong to 
the commutator subalgebra [G, G), so!. (5d = 0 and 
!. (52) = O. Therefore, for models of types IV-VII there ex­
ists only the homomorphism!. (53) = a. The self-similar 
metric (3) in these cases has the form 

(33) 

where all forms 0/ depend on the coordinate x I (see the list of 
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generators for three-dimensional algebras in Ref. 3). There­
fore in these solutions (33), the metric depends on only two 
spacelike variables R = e ax' and xv. 

For groups of Bianchi type I all differential forms are 
0/ = dXi; therefore, the self-similar metric (33) for model of 
type I is also stationary. 

Let us consider now models of types II and III. The 
generators of the corresponding Lie algebras have the fol­
lowing form3: 

type II: 51 = a2 , 52 = a3, 53 = al + X 3a2, 

d 2 Id 3 2 d 3 3 d I WI = X - X X, W = X, W = X, 
dw l = w21\w3, C 123 = - C 132 = 1. (34) 

type III: 51 = a2, 52 = a3, 53 = al + X 2a2, 

Wi = e -x'dx2 , w2 = dx\ w3 = dXI, 
dw l =Wl l\w2

, C I
13 = -C I

31 =1. (35) 

For these two algebras the commutator subalgebra 
[G, G] is one-dimensional: all generators have the form 
[G, G] =11-51' So there exist two essentially different 
homomorphisms: 

f~)(5d = 0, f~)(52) = 0, f~I(53) = 0, (36) 

f~'(51) = 0, f~'(52) = 0, f~'(S3) = 0, (37) 

The self-similar metrics, corresponding to the homomor­
phismf~l, have the form 

(38) 

where the differential forms Wi depend on the variable x I [see 
(34) and (35)]. Then these metrics depend on three variables 
xv, R = eax', and Xl. If the variable Xl is timelike then these 
me tries are nonstationary. Therefore only the self-similar 
metrics of Bianchi types II and III may be used for modelling 
self-similar nonstationary accretion of gas onto the center (in 
a nonspherically-symmetric case). In the following sections 
we begin to study self-similar solutions of Bianchi type II 
and III in the most simple cases. 

3. THE EINSTEIN EQUATIONS FOR SELF-SIMILAR 
BIANCHI TYPE II SOLUTIONS IN EMPTY SPACE 

In this section we consider self-similar Bianchi type II 
solutions (3) with one nondiagonal metric component 
g23(XO)' The metric in this case has the form 

ds = e2ap(good (XO)2 + g II(XO) dp2 + g22(XO) dt 2 

+ 2g23(XO) dt w3 + g33(XO)(W3)2), (39) 

where w3 = dt/> + Btdp, dw3 = - B dpl\dt = - Bw l l\w2, 
C 3

12 = B. For the metric (39) we shall reduce Einstein's 
equations in empty space to the simplest possible form, 
prove that the variable XO for which goo = - 1 has the 
meaning of an angle coordinate [that is the determinant 
g = det(gij(xO)) has two zeros], and show some exact solu­
tions for goo = 1. 

The Einstein equations in empty space for metrics (39), 
due to equations (16,~ (17), and (18), have the form 

R II = _!B2gll~2g33 -goo(l/2Igll/2)(lgll/2X I I)' 

=0, (40) 

R 22 = - }B2gll~2g33 _gOO(l/2Igll/2)(lgll/2x2i 

- 2a2g ll + aBgll~2g23 = 0, (41) 
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R 33 = VJ2gllg22g33 _gOO(1!2Igll/2)(lgll/2x3i 

- 2a2g ll 
_ aBglli2g33 = 0, (42) 

R \ = B2gllg22g23 _gOO(l/2Igll/2)(/gll/2X3i 

+ aBgII(2 - i 2g22) = 0, (43) 

R 23 = - gOO( 1!21gl1 /2)( Igi l /2X2 i + aBgIIg22g33 = 0, 
(44) 

ROo = ~R = ~oo(Xaa~(j - XaPXap) 

+ !(!B2gllg22g33 + 2a2g ll ) = 0, (45) 

ROo= -gOO!!,Xaa +haPXpa)-2a2gll =0, (46) 

R = -gOO(Xaa + !(Xa aX/ + XaPXPa)) 
- ~B 2g llg22g33 - 6a2g 11 = 0, (47) 

R OI = !BX23 + axil = 0. (48) 

From the equation R 23 = ° it follows that there are no solu­
tions with g23 = 0, so it is necessary to consider the nondia­
gonal case gn #0. The two equations ROo - ~ R = ° and 
R Ol = ° do not connect second derivatives of metric, so these 
two equations are constraints. All other equations are equi­
valent to a system offour independent differential equations 
of second order. Note, that the constraintRol = 0 is satisfied 
by virtue of the other Einstein equations, because the follow­
ing identity holds: 

aR II + ~BR 23 = _ gOO( 1!21gl1 /2)( Igi l /2 

X (axil + !BX23)) . 
= - gOO(1!2Igll/2)(lgll/2ROI)' = O. (49) 

Let us suppose that the coordinate p is spacelike, 
gil < 0, and introduce the new independent variable 7: 

d7 = IgIIII/2= 1!lgldl!2. (50) 
dxo 

In the new variable 7 we deduce, from Eqs. (40)-(49), the 
following system (here X = dX / d7, g I = Ig2~33 - rl31): 

-!B2g22g33+g00(1!2g:12)(g:12XII)' =0, (51) 

- ~B 2j2g33 + gOOf 1!2g~12)(g:12X2 2) . 
- 2a

2 + aBj2gn = 0, (52) 

- !B 2g22g33 + gOOf l/2g:12)(g:12X3 3) . 
- 2a2 - aBg22gn = 0, (53) 

gOO(l!2g:12)(g:12X\)' + aBg22g33 = 0, (54) 

B 2i2g23 + ~(1!2g:12)(g:12x3 2) . 
+ aB (2 - g22g22) = 0, (55) 

~OO(2Xldx22 + X33) + 2X22X\ - 2X\X23) 
- !B 2g22g33 - a 2 = 0. (56) 

By adding Eqs. (52) and (53), we obtain 

gOO(l!2g:12)(g:12( X22 + X3 3))' - 4a2 = 0, (57) 

which is equivalent to the equation 

gOO (g:12j"/g:/2 _ 4a2 = 0. (58) 

For gOO = - 1 all solutions ofEq. (58) have the form 

gl = C sin2
(2a(7 - 70))' (59) 

So all solutions of system (51 H 56) have two zeros of g I at 
7 = 70 and 7 = 70 + 1T/2a. Hence the variable 7, and there-
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fore the variable xO, also for goo = - 1, has the meaning of 
an angle coordinate and all solutions of system (51)-(56) are 
determined on the segment 70 < 1" < 1"0 + 1T/2a. 

Equation (51) separates from the others, which deter­
mine a closed system in the space of two-dimensional matri­
ces (with coordinatesg22, g33' g23)' Equation (51) follows from 
this system at the level of constraint ROI = 0: 

Xll= -(B/2a)x\. (60) 

Let us introduce in the space of two-dimensional matrices 
the following coordinates: 

g23,gl =g22g33 -gi3' h =g23/g33' (61) 

In these coordinates we have 

X13=hg~3/g1' (62) 
3 .. . . 1 2 

Xl = h - h g/gl + 2h g33/g33 - h h g33/gl' (63) 

X21 = g/gl - g33/g33 + h hg~3/gl' (64) 

X33=g33/g33-hhg~3/gl' (65) 

The order of the system (51)-(56) falls after the transforma­
tion into the following new coordinates: 

x = h + (B /4a)(gl/gl)' z = gl/gl' U = g~3/gl' (66) 

Equation (56) (equation R °0 -! R = 0) is equivalent to the 
equation 

(67) 

All other equations (51)-(55) are equivalent to the following 
system: 

I(U)' gOO U B gOO _ _ + _ z __ gOOux2 + gOO-uxz 
2u 4 u 2a 

- -u _zl_al =0 B Z (gOO ) 
a l 16 ' 

(68) 

gOo. gOO ooX U B 00 U 
-x+ -xz+g -- - -g z-=O, 

2 4 2u 8a u 
(69) 

z gOO 
gOO_ + _Z2 _ 4a2 = 0. 

2 4 
(70) 

From the system (68), (69), and (70) it follows that 

x= -zX, (71) 

where X is determined by expression (67). Therefore the 
equation (67) is a constraint which is preserved by the system 
(68), (69), and (70). From Eq. (67) it is easy to find an expres­
sion of variable u through the variables x, z, and u/u: 

64az 
U= ------------~~------~7 

_ 16a2gOOx2 + gOOB 2z1 _ 1OO2B2 

(72) 

After substitution of this expression into system (68), 
(69), (70), we derive a closed system of three differential equa­
tions in the variables x, z, and u/u. The last equation (for z) 

separates from the others and may be easily integrated: 

goo = - 1, z = 2a cot 2a1". (73) 
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After substitution of this solution into Eqs. (68) and (69), we 
obtain the following system of two differential equations: 

y = - 2a(cot2arLv + 2ux2 - 4B (cot2a1")ux 
+ (2B 2/sin2 2a7)u, (74) 

x = - 2a(cot2ar)x - xy + B (cot2arLv, (75) 

where 

y = ~ u = 1 (4a2 _ y2 sin
l 

2a7). 
u Xl sinl(2ar) - B 2 4 

(76) 

This system completely determines the evolution of all self­
similar Bianchi type II solutions of Einstein equations in 
empty space. 

Note that the system (68), (69), and (70) for goo = 1 has 
the singular point 

z = 4a, x = 0, u/u = 0. (77) 

The following exact solution of Einstein equations in empty 
space corresponds to this singular point: 

dsl = e2ap {d (XO)2 _ (xo + a4 )ldp2 

+ exp( 8a2a~ In(xO + a4 )) 

(Ba l ) 

X [ _ (a2 + l6a2:~ (In(xo + a4 ) + a3 )2) dt 2 

a l Ba l 

+ 8aa2 (In(xO + a4 ) + a3) dto} - al(w
3)2]},(78) 

Ba l 

where a l > 0, a2 > 0, a3, a4 are constants. 

4. SOME EXACT SOLUTIONS FOR SELF-SIMILAR 
MODELS OF BIANCHI TYPE I AND JII 

The metric of the Bianchi type III self-similar solution 
with one nondiagonal term g 12' has the following form: 

ds2 = e2aP(good (XO)2 + gIl (XO) dpl 

+ g dxO) dt dp + g22(XO) dt 2 + g33(Xo)(w3f). (79) 
where 

w 3 = eBI d¢>, dw3 = Bw2(\. w3
, C 323 = - B. (80) 

Einstein's equations for metrics (79) in empty space have the 
form 

R 11 = - gOO(1I2Igll12)(lgI112Xl d' - aBgll = 0, (81) 

R 1
I = _gOO(1I2Igll12)(lgI1/2X\)' + 2a2g l1 =0, (82) 

R12= _gOO(1I2IgI1/2)(lgI112Xli _B2gl1=0, (83) 

R 22 = _gOO(1I2IgII/1)(lgII/IXll) 
_ 2a2g l1 _ B 2g22 - aBgl2 = 0, (84) 

R 3
3 

= _ gOO(1I2Igll/Z)(lgII/2X33)' 
_ 2a2g l1 - B 2g22 - 3aBgl2 = 0, (85) 

R o, = axIl + iBx21 = 0, (86) 

R 02 = iB(X22 - X33) + axI2 = 0, (87) 

ROo - iR = i8'00(( Xa u)2 - ~ aXa J3) 
+ a 2g ll + B 2g22 + 2aBg l2 = 0, (88) 

R = - T= -goo(iaa +Xa J3XJ3 U
) 

_ 2B 1922 _ 6a l gll - 6aBgll = 0. (89) 
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The system (81)-(89) is equivalent to a system of four differ­
ential equations of second order, because of three constraints 
Ro, = 0, R02 = 0, ROo - ! R = O. Conservation of the two 
constraints Ro, = 0 and R02 = 0 by this system follows from 
the identities 

!B (R 22 - R 33) + aR 2 I 

= - gOO(1!2IgI1/2)(lgII/2)(!B (X22 - X33) + ax 12)) 

= - goo(1!2Igl'/2)(lgl,/2Roi = 0, (90) 

aR II + !BR21 
= -gOO(1!2IgI1/2)(lgII/2(axll + !BX21))' 
= _goo(1I2Igl'/2)(lgl,/2Ro,)' =0, (91) 

Conservation of the third constraint ROo - !R = 0 follows 
on the levels Ro, = 0 and R 02 = 0 from the identity 

(R °0 -!R)' = -(ilg)(R °0 -!R). (92) 

In the whole, the system (81)-(89) may be reduced to some 
system of four equations oftirst order. 

Diagonal solutions of the system (81)-(89) are reduced 
to exact solutions (30) [for type I (B = 0)] and to (31) (for type 
III). Let us show some exact diagonal solutions of Einstein's 
equations with a hydrodynamical stress-energy tensor. Such 
solutions, at goo = - 1, exist only for U I = u3 = O. Indeed, 
two Einstein's equations 

R 12 = (p + E)U 2U
I
, (93) 

(94) 

for diagonal metrics are identically equal to zero. But for 
goo = - 1 we have u2 #0; therefore, 
u, = u l = U 3 = u3 = O. Further, in the diagonal case, from 
the equation 

Ro, = (p + E)UoU I = 0, (95) 

we deduce Xii = O. From expressions (81)-(89) it follows in 
the diagonal case that R II = O. So from Einstein's equation 

R II = Til -!T=(P+E)UIU I +!(p-E) (96) 

and UI = 0, we deduce the necessary conditionp = E. Thus, 
for goo = - 1 the diagonal solutions exist only for 
u' = u3 = 0, P = E. In this case the metric (79) has the form 

ds2 = e2p( _ dO 2 + gll(O) dp2 

+ gdO ) dt 2 + g33(O )e2B
! d¢> 2). (97) 

The 4-velocity vector of matter has the form u i = (UO,0,u 2,0) 
p = E. Let us denote 

2 • • 
g22 = z, U = zlz, u = !g33Ig33' (98) 

From the equation Ro, = 0 it follows that gil = - A 2 

= const. All other Einstein's equations are reduced to the 
system 

1357 

z=uz, 

2 1 
U= -u -­

A2 

+ uu- - + - - _(U_U)2 (( 
n2 1)2 n2 )1/2 

- Z2 A2 Z2 ' 

2 2 B2 
u= -u -vu----. 

A 2 Z2 
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(99) 

(100) 

(101) 

Energy density and pressure have the form 

B2 2rK2 - 1 
E = P = 2z2 (u - v) L ' (102) 

where 

B2 1 
L=uv- - +­r A2 

±((uv- ~2 + ~2r- ~22(U_V)2)'/2,(103) 
L 

K= ----
B(u-v) 

(104) 

The components of velocity of matter have the form 

UO = 1I(z2K2 - 1)1/2, u2 = 1/(rK2 - 1)1/2. (105) 

Exact solution (31) may be obtained from the system (99), 
(l00), (101) at U - u = 0 and sign ( - 1) in Eq. (100). For self­
similar Bianchi type I (B = 0) diagonal solutions, from ex­
pressions (81)-(89), we have R02 = 0, so from Einstein's 
equation R02 = (p + E)UOU2 it follows (at goo = - 1) that 
Uo = O. Together with u' = u3 = 0 it means that the motion 
of matter in these solutions is absent. Einstein's equations in 
this case have the following exact solutions: 

ds2 = e2p( - dO 2 - A 2 dp2 + g2210 ) dt 2 + g33{O) d¢> 2), 
(106) 

where 

g22 = (Z(O))2, g33 = a3 .!!!...<O, gil = -A 2 = const (107) 
dO 

and function z(O) is determined from the integral 

J dz =0-0 
(a2 + 2a,ln(z) _ (lIA 2)z2)'/2 0' (108) 

Energy density and pressure have the form 

E=p=a/z2
, al>O. (109) 

Note that at goo = 1 there exist diagonal self-similar solu­
tions of Bianchi type I and III with motion of matter 
lUi = (uo,u',O,O)] and every equation of state [p = kE, 
O<k< 1]. Such solutions of Bianchi type I at g22 = g33 were 
investigated in Refs. 4 and 5. Let us show the new exact self­
~i~~ solution of Bianchi type III for goo = l,p = E, 

dr = e2p(dt 2 +gl! dp2 +gnlt) dr +g33(t )e2BZd¢> 2), 
(110) 

where 

gn = -A 2 = const, (111) 

g22 = !B2A 2 + C1 exp(2!At) + C2 exp( - (2/A )1)<0, 
(112) 

g33 = C3Kw C3 > 0, 

p = E = (41A 2~2)( -hB4A 4 - C1C2 ). 

(113) 

(114) 

The physical condition E>O denotes the permissible domain 
of constants values 

(115) 

For 

(116) 
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we deduce from Eqs. (111Hl15) the exact solution in empty 
space, depending on three constants C1'C2 ' and C3 . 
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Electrovac generalization of Neugebauer's N = 2 solution of the Einstein 
vacuum field equations a) 

Dong-sheng Guo b) and Frederick J. Ernst 
Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 

(Received 22 October 1981; accepted for publication 5 March 1982) 

We show that the N = 2 Neugebauer solution of the Einstein vacuum field equations is easily 
reproduced by employing two successive Kinnersley-Chitre (K-C) transformations of a type 
considered earlier by I. Hauser. Furthermore, by employing two successive K-C transformations 
of a type considered recently by C. Cosgrove we are able to produce a new electrovac 
generalization of the N = 2 Neugebauer solution. In principle, an analogous approach could be 
employed for the explicit construction of electrovac generalizations of Neugebauer solutions 
corresponding to higher values of N. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

Not long ago Neugebauer' published a family of new 
solutions of the stationary axially symmetric vacuum field 
equations, which he had obtained by using a newly disco­
vered Backlund transformation for the Ernst equation. His 
new solutions were, among other things, generalizations of 
the Tomimatsu-Sato (T -S) solutions. They also provided 
what may be called "multiple Kerr solutions." 

Recently Cosgrove,2 using the homogeneous Hilbert 
problem (HHP) formulation of Hauser and Ernst,3 identified 
a Kinnersley-Chitre (K-C) transformation which provides 
an electrovac generalization of Neugebauer's Backlund 
transformation. Using this transformation Cosgrove was 
able to derive the charged Kerr solution for a2 + e2 > m 2

• 

In as yet unpublished work Hauser4 developed a K-C 
transformation which yields the uncharged Kerr solution 
not only for a > m, but for a = m and a < m as well. This 
transformation, it turns out, was identified earlier by other 
methods. However, before we turn to Cosgrove's transfor­
mation, we shall illustrate our approach by showing that 
Hauser's transformation, when repeated twice, yields pre­
cisely the N = 2 Neugebauer solution. Then we shall evalu­
ate for the first time the result of applying the Cosgrove 
transformation twice, thereby obtaining what may be consi­
dered to be an electrovac generalization of the N = 2 Neuge­
bauer solution. 

Our new solution should prove useful for finding elec­
trovac generalizations of the Tomimatsu-Sato is = 2 solu­
tion analogous to the vacuum generalization which Kinners­
ley and Chitre5 found. In this paper we shall show how the 
K-C generalization can be obtained from the N = 2 Neuge­
bauer solution by an appropriate limiting process. How the 
(T -S) solution itself can be obtained was shown earlier by 
Kramer and Neugebauer6 and was described fully by Sato.7 

"Research supported in part by National Science Foundation grant PHY-
79-08627. 

b'A more complete description of the research upon which this paper is 
based will appear in Mr. Guo's thesis, to be submitted to the I.I.T. gradu­
ate School in partial fulfillment of the requirements for the Ph.D. degree. 

It remains a curious puzzle why no one has yet been able 
to solve an HHP for an electrovac transformation generaliz­
ing all three of Hauser's transformations. 

II. KINNERSLEY-CHITRE TRANSFORMATIONS 

The specification of a K -C transformation corresponds 
to the selection of a 3 by 3 matrix function vIr) of a complex 
parameter r, such that 

vt(r)~v(r) =~, det vIr) = 1, 

where 

o 
o 

The parameter r is related to the previously3 used complex 
parameter t by r = 1I(2t), while the matrix vIr) is related to 
the previously used matrix u(t ) by 

(

lit 

v(r) = ~ 

o 

o 

o 
1 

o 
Considered as a function of the complex parameter r, vIr) 
must be holomorphic in an open neighborhood of r = O. 

The vIr) which we shall consider in this paper have an 
exponential form 

vIr) = exp[J1/(r)], 

where J is a constant 3 by 3 matrix and 1/(r) is a real scalar 
function of the parameter r. The group conditions require 
that J satisfy 

~J+Jt~=O, TrJ=O. 

By explicit construction of the most general J we found that 
the relation 

j3 + aJ + ibI = 0 

is satisfied, where a and b are real scalars. By rescaling 1/(r) 
one may always arrange that a = 1,0, or - 1. 

In the vacuum case considered by Hauser J was of the 
form 
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where/ = 1,0, or - I, and where Hauser considered 

17(r) = mln[(r - Kz)l(r - K.J] 

fora = I, and 

17(r) = - (~)/1n[(r - K)I(r - K *)] 

for a = - I. This corresponds toJ 3 - a J = 0, i.e., to b = O. 
Thus far we have had no success solving the non va­

cuum HHP with P - a J = 0 and 

17(r) = (~)In[(r - Kz)l(r - K.J] 

or 

17(r) = - (!)l1n[(r-K)I(r-K*)]. 

If one specializes J so that the minimal polynomial is of 
the second degree attempts to solve the resulting HHP, then, 
barring the discovery of a new method of solution, one is led 
to consider the transformation discovered earlier by Cos­
grove, which with 

17(r) = - 11n[(r - K )/(r - K *)] 

corresponds to 

J z + (~)iJ + WI = O. 

One may, in fact, write Cosgrove's J in the explicit form 

J = (j)iI + (2/ E )hh t~, 

where h is an arbitrary 3 by 1 constant matrix, and where 
E= 2ih t~h. 

III. THE N = 2 NEUGEBAUER SOLUTION 

Applying Neugebauer's Backlund transformations, 
Kramer and Neugebauer obtained from Minkowski space a 
vacuum solution corresponding to a 5 potential which they 
expressed in the 4 by 4 determinant form. 

SI Sz S3 S4 
1 1 1 1 

KI K z K3 K4 

5= K/ K2 K2 K2 
2 3 4 

SI Sz S3 S4 
1 1 1 1 

KI K z K3 K4 

KIS1 K 2S2 K 3S3 K 4S4 
where the Ki (i = 1,2,3,4) are arbitrary real constants, where 

Si = exp(ilU;)r;. 

and where 

rj = [(z - KY + p2] 1/2. 

The lUi are arbitrary real phases. 
In order to obtain from the N = 2 Neugebauer solution 

the generalization of the vacuum T -S solution discovered by 
Kinnersley and Chitre, one may proceed as folIows. Select 
the phases lUi so that 

1360 

exp(ilU\) = (p + iq)exp(iAlzo), 

exp(ilU2) = - (p - iq)exp(iA~o), 
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exp(ilU3 ) = (p + iq)exp(iA3Z0)' 

exp(ilU4) = - (p - iq)exp(iA4Z0)' 

where p and q are constants with the property p2 + q2 = 1, 
and the A i are arbitrary constants. Then select the Ki so that 

KI =mp+zo, 

K2 = - mp +zo, 

K3 = mp -Zo, 

K4 = -mp -Zo, 

where m is an arbitrary constant (the mass parameter). If one 
now takes the limit as Zo goes to zero, one obtains the 5-
potential of the K-C generalization of the T-S (j = 2 solu­
tion. The K-C parameters a and /3 are related to our Ai by 

a = (1/4)(AI - A2 - A3 + A4)mp, 

/3= (1/4)(AI +A2 -A3 -A4 )mp. 

IV. THE HAUSER TRANSFORMATION 

In order to show that we get precisely the N = 2 Neuge­
bauer solution by applying Hauser's transformation twice in 
succession to Minkowski space, we shall have to describe the 
as yet unpublished Hauser transformation in some detail. 
For / = I it is equivalent to the double Harrison8 transfor­
mation, and for / = - I it is equivalent to the two-soliton 
transformation of Belinskii and Zakharov. 9 

As was remarked earlier, we now prefer to work in the 
r-plane rather than the t-plane. Accordingly, in describing 
the HHP we shall introduce new symbols Y + (r) = X _(t) and 
Y _(r) = X +(t), as well as 

p(r)~F(tIG : ~). 
in place of the symbols which were employed in the earlier 
Hauser-Ernst papers. If the seed metric is Minkowski space, 
then (suppressing the third row and column) 

( 
- (r - r + z) i(r + r - Z)) 

Po(r) = (1/(2r)) _ iI' 

wherer = [(z - r)2 + p2r/2. The inverse of this matrix is giv­
en by 

_ I ( - 1 i(r + r - Z)) 
Po(r) =. . 

-I r-r+z 

The HHP consists of finding Y +(r) and Y _(r) such that 

Y + = Y _Po exp(j17)Po -I. 

Y +(r) is holomorphic in r except at the places where 17(r) has 
singularities, and Y _(r) is holomorphic in r except at the 
places where Po(r) has singularities; namely, at the branch­
points of the function r( r). Furthermore, Y _ (r) goes to I as r 
goes to infinity. 

By introducing the r-dependent matrix field 

y=PrJPo- l
, 

one can reexpress the HHP in the form 

Y + = Y 3xP(Y17), 

or even better, one can write 
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y _ = Y +exp( - r7J), 

where 

exp{ - r7J) = [{I - r)/2]exP7J + [(I + r)/2]exp{ - 71)· 

Hauser's solution of the HHP for the casel = I and 

7J(r) = (1I2)ln[(r - K2)/(r - Ktl] 

is obtained by setting 

Y + = N°[A exp 71 + B exp ( - 71)], 

where A and Bare r-independent matrix fields such that 
A +B=I, 

A [/ - r(K.l] = 0, 

B [/ + r(K2l1 = 0, 

and where 

N° = lim exp[(r7J)] 

as r goes to infinity. The explicit evaluation of the matrices 
N°, A, and B is very straightforward. 

There are, of course, many ways to parametrize the con­
stantj matrix, and which is best depends upon one's objec­
tives. To facilitate comparison with the results of Kramer 
and Neugebauer we chose to express thej matrix of the first 
Hauser transformation in the form 

o ) U- 1 

-1 1 , 

(
sin a 2 sin a 1 ) U= , 

1 1 + cos a 2 1 + cos a l 

and the j matrix of the second Hauser transformation in the 
form 

j2 = U2 (~ ° ) U- 1 
_ 1 2 , 

where 

U _ ( sin a 4 sin a 3 ) 

2 - 1 + cos a4 1 + cos a3 . 
For the first Hauser transformation the real function 7J{r) is 
given by 

711 = (!)In[(r - K 2)/(r - K.l], 

while for the second Hauser transformation 

712 = H)ln[(r - K4)1(r - K3)]' 

We shall also employ the notation 

rn IT) = Pojn P 0- I. 

(Note especially the subscript 0 rather than n - 1 on P.) 
Under the nth Hauser transformation the P potential is 

transformed from Pn _ I to 

Pn =N~[AnexPl7n +Bnexp(-7Jn)]Pn_I exp(-jn7Jn)' 

The ~ -potential is easily obtained from 

The actual calculations were carried out after having 
introduced certain quantities Qi (i = 1,2,3,4) which can be 
defined in terms of the eigenvectors 
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of rl(K.) corresponding to eigenvalue - I, of rl(K2) corre­
sponding to eigenvalue + 1, of 

exp[ - r.{K3)7J.{K3)]r2(K3)exp[rt{K3)7Jt(K3)] 

corresponding to eigenvalue - I, and of 

exp[ - rl(K4)7JI(K4)]r2{K4)exp[rl(K4)1l1(K4)] 

corresponding to eigenvalue + I, respectively. 
After a single application of the Hauser transformation 

to an arbitrary vacuum spacetime, we obtained the complex 
~ potential 

~ = ~(seed) - 2i(KI -K2)1(QI - Q2)' 

while using two applications of the Hauser transformation to 
an arbitrary vacuum spacetime, we obtained the complex ~ -
potential 

QI Q2 Q3 Q4 
1 1 1 1 

KI K2 K3 K4 

~ = ~(seed) - 2i 
K2 K/ K2 K/ I 3 

Q. Q2 Q3 Q4 
1 1 1 1 

KI K2 K3 K4 

K.QI K2Q2 K3Q3 K4Q4 
In the case when the seed metric is Minkowski space and 
~(seed) = I, one finds that the Q 's have the form 

Qk = i[exp(iwdrk + (Kk -z)], 

where WI = a. and w2 = a 2, while W3 and W 4 are more com­
plicated functions of the a's and K 'So The important thing to 
notice is that the w's are unconstrained real constants, just as 
they were in Neugebauer's solution. In fact, it is quite easy to 
see that our result using Hauser's transformations is in com­
plete agreement with the result of Kramer and Neugebauer 
using the Backlund transformation approach. In the case of 
a more general seed metric, our way of writing the ~ -poten­
tial in terms of 4 by 4 determinants is an alternative to N eu­
gebauer's manner of expression in terms of 5 by 5 
determinants .. 

V. THE COSGROVE TRANSFORMATION 

While we are not quite sure how Cosgrove himself 
solved the HHP corresponding to his transformations, we 
had no trouble reproducing his results, including the deriva­
tion of the charged Kerr metric with 

a2 + e2 >m2
• 

In particular, the HHP can be solved by noting that if 

V-I = L 2 [(r - K*)/(r - K)] 1/3 

+ L. [(r - K )/{r - K *)]2/3, 

where 

LI = (2iIE)hh t~ 

and 
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are projection operators onto one and two dimensional sub­
spaces, respectively, then one may reasonably expect Y + to 
have the form 

Y+(r)=N°A [(r-K)/(r-K*)]1/3 

+N°B [(r-K*)/(r-K)]2/3, 

where A and Bare r-independent matrix fields such that 
A + B = 1. In fact, if one writes out 

Y- = Y+POV-IPO- I, 

and 

V-I = exp( - J1J), 

one sees that two of the terms have simple poles unless A and 
B are chosen so that 

APo(K*)L I = 0, BPo(K)L2 = 0. 

These conditions are easily seen to require 

B = EPo(K*)LIPo(K)-1 

2h ti~Po(K)-IPO(K*)h 

and A = I-B. This is, in fact, the solution of the HHP. 
Carrying out two successive Cosgrove transformations 

is a little more tedious than carrying out two successive 
Hauser transformations, because one deals in the electrovac 
case with 3 by 3 matrices, and because one must evaluate not 
only the gravitational complex potential but also the electro­
magnetic complex potential <P. However, the method we 
used was basically the same. 

The nth Cosgrove transformation corresponds to the J 
matrix 

I n = (l/3)il + (21En)hnhn t~, 

where 

En = 2ihn t~hn' 

and where hn is a constant 3 by 1 matrix which is completely 
arbitrary. For the nth transformation we also write 
v(r) = exp(Jn1Jn), where 

1Jn(r) = I1n[(r - K~)/(r - Kn)], 

and we introduce the notation 

Yn(r) = Po JnPo -I. 

Under the nth Cosgrove transformation the P potential is 
transformed from Pn _ 1 to 

Pn = N~ [Anexp(i1JnI3) + Bnexp( - 2i1J./3)] 

XPn _ 1 exp( - I n 1Jn)· 

The 'If and <P potentials are easily evaluated using 

(- i,'lf,<P) = lim (0,2r,0)P(r). 

As in the vacuum case, our actual calculations were per­
formed after introducing certain quantities QjlR j and Sj 

Ii = 1, ... ,6) which may be defined (up to obvious linear com­
binations) in terms of the eigenvectors 

~;~GJ 
Here t/!I is an eigenvector of YI(KI *) corresponding to eigen-
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value - 2i13, t/!2 and t/!3 are eigenvectors of YI(KI) corre­
sponding to eigenvalue + i13, t/!4 is an eigenvector of 

exp [ - Yl(K T)1JI(K Tn Y2(K !)exp [YI(K T)1JI(K!)] 

corresponding to eigenvalue - 2i13, and t/!5 and t/!6 are ei­
genvectors of 

exp[ - YI(K2)1JI(K2)]Y2(K2)exp[YI(K2)1JI(K2)] 

corresponding to eigenvalue + i13. 
We applied two successive Cosgrove transformations to 

an arbitrary electrovac seed solution with 'If - and <P-poten­
tials denoted by 'If (seed) and <P (seed), respectively. After a 
quite substantial calculation we obtained the 'If - and <P-po­
tentials of the new electrovac spacetimes in the form 

'If = 'If(seed) - 2iN ID, <P = <P (seed) - 2N'ID. 

After the first Cosgrove transformation we obtained 

D = .1 123, N = (K T - KdR 1.1 23 , 

N' = (KT -KI)RI.1 '23. 

After the second Cosgrove transformation we obtained 

D = .1m.1156(K2 - Kd(K! - K T) 

+.152~164(K! -Kd(K2 -KT) 

+ .1623.1145(K! - K I)(K2 - K n 
while 

and 

N=.145ad32RI(KI -KT)(KI -K!){KT -K2) 

+.1m.165RI(KI - KT)(K2 - K!)(K2 - KT) 

+ .1m.161R4(KI - K T){K! - Kd(K2 - K!) 

+.1623.15IR4(KI-KT){K2 -K!)(KI -K!) 

+ .1123.165R4(KI - K 2){KI - K !)(K2 - K!) 

N' =.145ad '32RI(K1 -KT)(KI -K!)(KT -K2) 

+ .1m.1 '6SRI(KI - KT)(K2 - K!)(K2 - KT) 

+.1523.1 '6IR4(KI -KT)(K! -KI)(K2 -K!) 

+.1623.1 'sIR4(KI -KT)(K2 -K!)(KI -K!) 

+ .1123.1 '6SR4(KI - K2)(KI - K!)(K2 - K!). 

In these expressions we have used the 3 by 3 determinants 

.1ijk = det(t/!jt/!jt/!k) 

and the 2 by 2 determinants 

and 

.1 ' .. = jQi 
lj R

j 

It should be observed that the former satisfy the identity 

.1423.1156 + .1523.1164 + .1623.1145 = .1123.1456. 
It is not difficult to evaluate the Q 's, R 's, and S's in 

terms of the components hi (i = 1,2,3) for the two successive 
Cosgrove transformations. In the special case when h 3 = ° 
for both transformations, and when the seed metric is a vacu­
um space-time, we may set 

Q3 = Q6 = R3 = R6 = SI = S2 = S4 = S5 = 0, 
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R. = R2 = R4 = R5 = S3 = S6 = l. 

The fields Q., Q2' Q4' and Q5 then correspond to the fields Q; 
Ii = 1,2,3,4) which we encountered in the consideration of 
the double Hauser transformation. 

VI. POSSIBLE APPLICATIONS OF THESE RESULTS 

While our new solution of the electrovac field equa­
tions, obtained by using Cosgrove's transformation twice in 
succession upon an arbitrary electrovac seed metric is per­
haps interesting in its own right, since it is a natural general­
ization of Neugebauer's N = 2 vacuum solution, we antici­
pate that the solution will be of interest primarily as a source 
of additional electrovac solutions involving rational func­
tions. In fact, it is our intention soon to publish T -S like 
solutions which are obtainable by limiting processes from 
our solution when the seed space-time is ordinary Min­
kowski space as well as generalized Plebailski-Demiailski 
solutions which are obtainable from our solution when the 
seed space-time is Minkowski space but an alternative pair of 
Killing vectors is focused upon. Naturally one may also con-
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template the future construction of electrovac generaliza­
tions of Neugebauer's vacuum solutions with N> 2, al­
though we shall probably leave that for someone else to do. 
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New exact solutions to Einstein's equations are given which are spherically symmetric and static 
with perfect fluid distributions satisfying a linear equation of state p = np and nE(O, 1]. 
Heintzmann's generating method is then used to build up a family of new solutions for each value 
ofn. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

Exact solutions to the equations of general relativity 
which are static, spherically symmetric, perfect-fluid distri­
butions of matter have been considered in the literature (a 
review has been given by Kramer et a/. I

) to represent the 
interior of a relativistic star in equilibrium. 

To get a semi realistic relativistic stellar interior, one 
should start with a reasonable equation of state for the distri­
bution of matter. However, in practice most of people as­
sume an ad hoc analytic expression for one of the compo­
nents of the metric tensor or the density and then obtain the 
equation of state via the field equations. This computational 
method has the incovenience that one can easily obtain un­
physical equations of state. 

To avoid the last difficulty, we shall assume from the 
begining the equation of state of the distribution of matter; in 
fact, we shall consider a linear density-pressure relationship 
of the formp = np, nE[O,I]. After Einstein's equations are 
put into a form suitable for analysis, we obtain a particular 
solution (new as far as we know) for each nE(O,1]. Next, we 
apply a method for generating a (possibly) new solution from 
another known solution due to Heintzmann 1,2 and obtain a 
one-parameter family of new solutions for each value of 
nE(O, 1]. Finally, some remarks concerning the regularity of 
these families are made, and we conclude with the hope that 
the solutions mentioned can be used as relativistic models in 
certain regions of the star. 

II. BASIC EQUATIONS 

The gravitational field being static and spherically sym­
metric, coordinates may be chosen so that the metric takes 
the form 

ds2 = _ e2"dt 2 + e2r (e2(3d? + dil2), 
dil 2 o==de 2 + sin2e drp 2, 

w here v and (3 are each functions of the coordinate r. 

(I) 

As we are interested in perfect fluid distributions, the 
energy-momentum tensor is 

(2) 

where p is density, p is pressure, and u a is velocity. 
In the obvious orthonormal tetrad (UJo = e"dt, 

UJ 1 = e r + (3dr, UJ2 = e r de, UJ3 = e rsine drp ), Einstein's equa-

tions then are equivalent to the following set (81TG = c = 1): 

p = e··· 2(r +(3)(2(3' + e2(3 - 1 {-:J, 
p = e 2(r+(3)(2v' - e2(3 + 1), 

v" + V'2 - (2 + (3 ') v' = 1 + (3' - e2(3. 

By assuming a linear density-pressure relationship 

p = np, nE[O,I], 

Eqs. (4) and (5) imply 

p = 2(1 + n) -Ie - 2(r+(3)(v' + (3'), 

v' = n(3' + ~(I + n)(e2(3 - 1). 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Thus, the problem of finding a static, spherically sym­
metric solution for a perfect-fluid distribution with a linear 
equation of state is reduced to obtain a solution for v and (3 
satisfying the ordinary differential equations (6) and (9). 
Once a solution has been found, the density and pressure are 
calculated via Eqs. (8) and (7), respectively. 

III. EXACT ANALYTICAL SOLUTIONS 

A.Casen= 0 

For a dust distribution of matter (p = 0), Eq. (9) gives 

(3 = ~ InC I + 2v'). (10) 

Thus, by substituting Eq. (10) into Eq. (6), we obtain 

v'=O or v"= -v'(1+2v') 

and these two equations obviously imply (3' = - v', i.e., 
p=O taking into account the expression (8) for the density. 
Therefore, there exists no solution corresponding to a dust 
distribution such that p > O. This is a very logical result from 
a physical point of view, because for such an equation of state 
there are no pressure gradients that can balance the attrac­
tive gravitational forces. 

B. Case nE(O,1] 

A particular and simple solution to Eqs. (6) and (9), for 
any value of n, is given by 

v = 2n (1 + n) - 1 r, (3 = ~ In [I + 4n (1 + n )- 2] . (II) 
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The corresponding density, obtained from Eq. (8), is 

p= [1 +l(1 +n)2n -I]-le -2r. (12) 

and the line element (1) then reads 

ds2 = _e2Ardt2+e2r[(1+A2n-l)dr+d!12], 

A =2n(1 + n)-I. (13) 

On choosing Schwarzschild (or canonical) coordinates, 
obtained making the change e r -+r, our exact solution is 

ds2 = _r4nll+n) 'dt 2+[1+4n(1+n)-2]dr+rd!12 

(14) 

p=[1+[l(1+n)-2n -I]-lr -2, p=np, nE(O,l]. 

As all the solutions violate the condition of regularity at the 
center insofar as the density and pressure become infinite at 
that point while goo vanishes there, they can be considered 
unphysical solutions with regard to the possibility of repre­
senting stellar interiors globally. However, they can be used 
locally, then representing only certain regions of the star. 

We shall comment that the 3-geometries t = ct ob­
tained from (14) can be embedded in four-dimensional Eu­
clidean space. By settingx4 = 2(n)1/2( 1 + n)-I r, one trivially 
obtain a surface that is a three-dimensional cone C3 C R4. 

IV.GENERATION OF NEW SOLUTIONS 

By applying Heintzmann's generating method l
•
2 to our 

exact analytical solution given by Eq. (14), we have obtained 

ds2 = _ r4nll +n)-'dt 2 + a[l - Car+ b ]-Idr 

+rd!12, nE(O,l], 

p = 4n(1 + n)-2a -Ir-2 + C(3 + b ),P, 

p=4n2(1 +n)-2a -l r-2-C[1 +4n(1 +n)-I]'p, 

where 

(15) 

a=1 + 4n(1 + n)-2, b =4n(1 - n)(1 + n)-I(l + 3n)-I, 

and C is an arbitrary constant. Each solution obtained in this 
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form is obviously new, being the old solution recovered for 
the value C =0. 

We mention that this C-family of solutions, for each 
nE(O, 1], violate the condition of regularity at the center be­
cause p and p become infinite at that point and goo vanishes 
there (observe that all the solutions of the family behave as 
the C = 0 solution near the center). 

Obviously for C < 0, the assumption p > 0 implies that 
the solution (15) can be used only in the region 

r< UlC i(l + n)2a(3 + b )n-I] -d, d==(2 + b)-I, 

while, for C> 0, the assumptions p > 0 and goo > 0 imply the 
following region of validity: 

r < mini (Ca) - d, [ACa(1 + n)(l + 5n)n-2] - d j, 

d=(2 +b)-I. 

Finally we remark that for the particular value n = 1 (a 
stiff equation of state for the old solution), Eq. (15) reads 

ds2 = r( - dt 2 + d!1 2) + 2(1 - 2Cr)-ldr, 

(16) 

p = ~r-2 + 3C, p = ~r-2 - 3C=p - 6C. 

The solution generated in this form with C> 0 is exactly 
the irregular solution found by Buchdahl and Land3 in their 
study of the most natural relativistic analog of the classical 
incompressible sphere. 

ACKNOWLEDGMENTS 

Thanks for stimulating and useful comments are due to 
R. Lapiedra. 

'D. Kramer et al., in Exact solutions of Einstein's Field Equations (VEB 
Deutscher Verlag der Wissenschaften, Berlin, 1980), pp. 163-5. 

2H. Heintzmann, Z. Phys. 228, 489 (1969). 
'H. A. Buchdah1 and W. J. Land, Austr. Math. Soc. 8, 6 (1968). 

J. Ibanez and J. L. Sanz 1365 



                                                                                                                                    

Static gravitational fields in a general class of scalar-tensor theories 
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The static field equations are investigated within the framework of a general class of scalar­
tensor theories of gravitation proposed by Nordtvedt. In the Brans-Dicke and Barker theories, it 
is shown that in vacuum goo is functionally related to the scalar field. Two families of exact 
solutions are also obtained for a static spherically symmetric gravitational field in the Barker 
theory. 

PACS numbers: 04.50. + h 

1. INTRODUCTION 

Nordtvede (1970) proposed a general class of scalar­
tensor theories of gravitation in which the w parameter of the 
Brans-Dicke theory is allowed to be an arbitrary function of 
the scalar field. This class includes the theories of Jordan2 

(1959) and Brans-Dicke3 (1961) as special cases. In a recent 
communication Barker4 (1978) considered another special 
case where w = (4 - 3t/J)I(2¢ - 2), which ensures that the 
Newtonian gravitational constant G does not vary with time 
and also the strong principle of equivalence is not violated. 
In the same paper Barker discussed some interesting possi­
bilities of the proposed theory and obtained an analytic solu­
tion for an empty universe from the standpoint of the theory. 

Studies of static space-time within the framework of the 
general class of scalar-tensor theories have also received 
considerable attention in recent years. So far as the present 
paper is concerned, immediate reference may be made to the 
work of Banerjee and Bhattacharya5 along with Dutta 
Choudhury and Banerjee6 who, in their respective studies of 
static fields, in the Brans-Dicke and Barker theory, obtained 
expressions for goo as a function of the scalar field, assuming 
beforehand that they are functionally related. Studies in this 
regard are presented in Sec. 2, where it is shown that the 
functional relationship between goo and the scalar field in 
each theory follows directly from the corresponding field 
equations, without any prior assumption. 

In Sec. 3 we have considered the case of the static 
spherically symmetric field about a point mass with w in 
Barker's form. The field equations are investigated and the 
metric coefficients are at first expressed explicitly as a func­
tion of either the scalar field alone or both the scalar field and 
the radial coordinate. By virtue of these expressions, the 
whole system of field equations is effectively reduced to a 
single differential equation involving only a known function 
of the scalar field as the dependent variable, which on inte­
gration yields two families of exact solutions, which are 
probably the only known solutions in the present case. 

2. THE STATIC FIELD EQUATIONS AND goo - !/J 
RELATIONS IN THE BARKER AND BRANS-DICKE 
THEORIES 

The field equations in the metric formulation of Nordt-

vedt I can be expressed in the form 

81T W 
Gin' = - ¢~". - !/J2(¢./,!/J., - ~I,,·¢.a¢·(l) 

I 
- -;j(!/J.I'" - gin' 01/1), (2.1) 

01/1 = 81TT _ (dw/d1/l) 1/1 !/J'''. (2.2) 
(2w + 3) (2w + 3) .cr 

Equations (2.1) and (2.2) can be combined to yield ' 

t/JR"" = - 81T[ ~n - (;:: 13) Tgw ] 

(dw/d¢) .1 •• I •. a _ ~.I •• 1. _ .1. (2.3) + 'l'a'l' g/l-v .1. 'I',fI.'I'.v 'I'./l-V· 
2(2lu + 3) . 'I' . 

The line element for a static space-time can be written 
as 

ds2 = g(X) dt:' + g"bdx"dxh, (2.4) 

where g(X) and gab are functions of space coordinates only, 
and a and b run from I to 3. For the static metric (2.4) it 
follows from the definition of RI" that 

(2.S) 

where 

(2.6) 

and an index following a colon indicates covariant differenti­
ation with respect to the metric tensor gah' Further, the field 
being static !/J.o = 0, and one obtains 

¢:g = F- ' F"t/J a. (2.7) 

In view of (2.4)-(2.7) it follows from Eq. (2.3) that 

81T[ro _ (eu + 1) T]F= _ (t/JF") " + F(dw/d¢)¢,ut/J·
a 

o (2UJ + 3) 2(2UJ + 3) 

Equation (2.8) can also be written as 

81T[T O - (w+O)T]F 
o (2lu + 3) 

= - .1. Fa - ¢ (J _g. Fa) 
'I',a V-? .0 

F(dw/d¢)tP a tP,a 
+ " 

2(2w + 3) 

(2.8) 

(2.9) 
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where g* denotes the determinant of the gab matrix. Multi­

plying Eq. (2.9) throughout by J - g*, one obtains 

81i[TO _ (eu + 1) T] c= 
o (2eu+3) v- g 

= (deuld1/;)1/;.a1/;·av-=g _ ( C-:;1/;Fa). (2.10) 
2(2(tI + 3) ,.; - g' .a 

Again, in the static case under consideration, Eq. (2.2) yields 

81iTv=--g = £g(d(tlldt/J)1/;.a1/;·a + ( ~Ft/ia) . 
(2w + 3) (2w + 3) V -g' .a 

(2.11) 

Subtracting Eq. (2.10) from (2.11) one obtains 

F -IV(Ft/J) + (deu/d1/;)t/J.a t/J.u = 81i[ (eu + 2) T _ Tg], 
2(2eu + 3) (2eu + 3) 

(2.12) 

where V is the covariant Laplace operator in the three di­
mensional, subspace whose metric tensor is gub' It may be 
noted here that when eu = constant, Eq. (2.12) reduces to the 
corresponding form in the Brans-Dicke theory (Buchdahl,7 
1973). 

When T).Lv = ° and (tI = (4 - 3t/J)/(2t/J - 2) (Barker's 
form), Eqs. (2.2) and (2.12) reduce, respectively, to 

O(J(f/! - 1) = 0, (2.13) 

4F- 1V(Ff/!) =~b(f/! - l)-If/!.at/J.b' (2.14) 

where f/! now refers to the Barker scalar. Introducing now a 
new variable/(t/J) by means of 

tan-I ~ = f, (2.15) 

one may express Eqs. (2.13) and (2.14), respectively, in the 
following forms: 

(1/ J - g)(g"b J - g* Fsec2 / f.b ).a = 0, (2.16) 

(II J - g*) [~h ~(F'hsec2 1 + 2Fsec2/tan/f.b ],a = 0. 
(2.17) 

From Eq. (2.17) it is easy to see that 

v' ~ g (gab J - g* Fsec
2 
If.b).U(:;b + 2tan/ ) 

+ ~bsec2 /Ib (:.b + tan/) = 0, 
Ib .a 

(2.18) 

which in view of Eq. (2.16) yields 

gab(tan/).b(F,bIF f.b + tan/l.a = 0. (2.19) 

Since, by hypothesis, t/J is not a constant, Eq. (2.19) implies 
that 

F.bIF Ib + tan! = n, (2.20) 

where n is an arbitrary constant. Relation (2.20) shows that F 
and 1 are functionally related or equivalently, in view of 
(2.6) and (2.15), goo and t/J are functionally related. This re­
sult, which appears as an assumption in the work of Dutta 
Choudhury and Banerjee6 (1980), is thus found to be a natu­
ral consequence of the field equations. By virtue of this result 
one may write F = F(f) and express Eq. (2.20) as 
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[In(Fsecl)], = n, (2.21) 

where a prime indicates differentiation with respect to !. 
From Eq. (2.21) one immediately gets 

(2.22) 

where A I is an arbitrary constant of integration. Finally, in 
view of (2.6), (2.15), and (2.2), one obtains 

goo1/; = AeZH1"n 'Iv;f'i, A = const (2.23) 

which is the explicit relation between g(X) and t/J previously 
obtained by Outta Choudhury and Banerjee.6 

Next, we consider the corresponding case in the Brans­
Dicke theory, where eu is, however, a constant. In a vacuum, 
Eqs. (2.2) and (2.12) reduce, respectively, to 

01/; = 0, (2.24) 

F -'V(F1/;) = 0, (2.25) 

where t/J now refers to the Brans-Dicke scalar. Again, Eqs. 
(2.24) and (2.25) may also be written as 

(1/Fc)(~hJ-g*Ft/J.bt =0 (2.26) 

and 

(liN [gahJ -g*(Ft/J).b L = 0, (2.27) 

respectively. 

From Eqs. (2.26) and (2.27), one obtains 

gabt/J.b(F,bt/JIFt/J,b).u = 0, (2.28) 

which in turn implies that 

F.bt/JIFt/J,b = const, (2.29) 

since t/J cannot be a constant by hypothesis. Relation (2.29) 
shows that gm)( = F 2) and t/J are functionally related. This is 
the promised result. With Eq. (2.29) at hand, it is a simple 
matter to prove that the functional relationship is of the form 

g(K) = C1t/Jc" (2.30) 

where C, and C2 are arbitrary constants. The relation (2.30) 
in the Brans-Dicke theory was obtained earlier by Banerjee 
and Bhattacharya.5 However, it may be noted that the proof 
of relation (2.30) given here follows directly from the field 
equations and does not presuppose functional dependence of 
goo on t/J. 

3. STATIC SPHERICALLY SYMMETRIC FIELD ABOUT A 
POINT MASS IN BARKER'S THEORY 

We consider the line element in the isotropic form, 

ds2 = edt 2 _ eJ.L(dr'l + r'ld() 2 + r'l sin2()d¢ 2), (3.1) 
where I" and v are functions of r alone. Then with 
(tI = (4 - 3t/J)I(2t/J - 2) the field equations (2.1) and (2.2) take 
the form 

1",2 I"'V' I"'v' (4 - 3t/J)t/J'2 t/J" I"'t/J' - + -- + -- = -'---~.!....- + ---
4 2 r 4(t/J-l)t/J2 t/J 2t/J 

t/J,2 

2t/J(t/J - 1)' 
1"" v" V,2 1'" + v' 
-+-+-+--

2 2 4 2r 
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(3.3) 

2¢(¢ - 1)' 
(3.4) 

2¢' (P' + v')¢' + ,,_ ¢'2 
-r + 2 ¢ - 2(¢-l)' 

(3.5) 

where ¢ is a function of r and a prime indicates differenti­
ation with respect to r. 
Equation (3.5), when ¢' #0, can be written in the form 

2 (P' + v') ¢" ¢' 
-; + 2 + if! = 2(¢ - 1)' 

which in turn yields on integration 

relit + "1!2¢' = a(¢ _ 1)112, 

where a is a arbitrary constant of integration. 

Again, the operation 2 X Eq. (3.3) + Eq. (3.2) 
- Eq. (3.4), in view of Eq. (3.5), yields 

(3.6) 

(3.7) 

v +--+-+ v+- -+-+- =0 " v'¢' ¢" (' ¢')(v' v' 2 ) 
¢ ¢ ¢ 2 2 r ' 

which on integration gives 

relit + \'I12(v'¢ + ¢') = b, 

where b is another arbitrary constant. 
By means of Eqs. (3.7) and (3.9) one easily gets 

, ¢' ( b ) ¢' 
v + -;;; = --;; ¢(~ ¢ _ )' 

The integration of Eq. (3.10) gives 

(3.8) 

(3.9) 

(3.10) 

e\'¢=Ae2Iblaltan \'.;.-1" (3.11) 
where A is an arbitrary constant. Although we are consider­
ing the spherically symmetric case, relation (3.11), which is 
already derived in Sec. 2 under general consideration, holds 
irrespective of any symmetry condition. 

Again, in view of relation (3.11), Eq. (3.7) yields 

which is another useful relation in this case. 
Now, defining a new variable /(¢) by means of 

tan-I.[i=l = / (3.13) 

and substituting for the derivative of v and f.l in Eqs. (3.2)­
(3.5) their corresponding expressions obtained from (3.11) 
and (3.12), it follows that Eqs. (3.2)-(3.4) reduce to 

1"2 2 I" ( b
2

) ,2 -+-.- - 1+- / =0, 
/,2 r /' a2 (3.14) 

I'" /"2 1 I" ( b 2) ,2 --+----+ 1+-1 =0, 
/' /,2 r /' a 2 

(3.15) 

2/'" 3/"2 ( b 2) ,2 --+-+ 1+-1 =0, 
/' /,2 a2 

(3.16) 

respectively, whereas Eq. (3.5) is identically satisfied. Again, 
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Eqs. (3.15) and (3.16) together can be reduced to Eq. (3.14). 
This may be easily verified by multiplying Eq. (3.15) 
throughout by 2 and then subtracting the resultant equation 
from Eq. (3.16). Thus, by virtue of relations (3.11) and (3.12), 
integration of the field equations (3.2)-(3.5) is reduced to the 
task of solving the differential equation (3.14). 

By the substitution r/J = r /" (3.17) 
Eq. (3.14) may be expressed in the form 

(rr/J '/r/J)2 = 1 + m2r/J 2, (3.18) 

where m 2 = I + b 2/a2. 

Equation (3.18) in turn yields 

d</> = + dr. 
</> (1 + m2r/J 2)1/2 - r 

(3.19) 

(3.20) 

When the positive sign in Eq. (3.20) is taken, the solution is 

r/J = 2Cr/(m2 - C2?), (3.21) 

where C is an arbitrary constant. The negative sign gives 

r/J = 2Cr/(m2? - C 2
). (3.22) 

When the expression for r/J in (3.21) is substituted in (3.17), 
one obtains after integration 

1= In B , [ (
m+cr)l/m] 
m -Cr 

(3.23) 

where B is another arbitrary constant. 
Again, when the expression given by (3.22) is used in (3.17) 
one obtains 

/= In B . [ (
mr - C)l/m] 
mr+C 

(3.24) 

Both families of solutions satisfy Eq. (3.14). Accordingly, we 
also have two families of solutions of the field equations 
(3.2)-(3.5), which are now obtained from (3.11)-(3.3) by 
means of(3.23) and (3.24), respectively. These are as follows. 

e" = AB 2lblal( m + Cr)2blma cos2ln[B (m + Cr)l/m), 
m -Cr m -Cr 

(3.25) 
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The solution of the Markovian master equation for the quantum open system of n degrees of 
f~eedom is formally written in terms of a path integral and the stationary phase approximation is 
dIscussed. The exactly soluble models with generators quadratic in position and momentum 
operators are investigated and the explicit expressions for the space-time propagators for one­
dimensional systems are derived. 

PACS numbers: 05.30. - d 

1. INTRODUCTION 

In recent years many problems in nonequiIibrium sta­
tistical mechanics were formulated and solved using the 
quantum Markovian master equations. 1-6 It is rather com­
monly believed that the dynamics of a quantum open system 
interacting with the environment can be approximated by 
the so-called completely positive dynamical semigroup un­
der the assumption that the relaxation times of the correla­
tion functions of the reservoir are much shorter than the 
natural time scale for the open system. 

The dynamical semigroup [exp tL. t;,O J fulfills the 
Markovian master equation 

(1.1) 

wherep(t) is a density matrix of the open system and L is the 
generator of the semigroup. 

Lindblad proved4 that the general form of the bounded 
generator L is the following: 

Lp = i~ [H.p] + :fz ~ [[VaP. V~] 
(1.2) 

where H = H· and Va. l:a V~ Va are bounded operators on 
the Hilbert space JY' of the system. 

This form is assumed to be valid (with H. Va generally 
unbounded) also for the unbounded generators for the phys­
ically interesting examples. 2.5.6 

The fz dependence ofthe dissipative part in (1.2) which is 
important for the semiclassical expansion 7 may be estab­
lished by taking into account the method of derivation of 
(1.2). Namely. the origin of this part is a double commutator 
with respect to the interaction Hamiltonian 1.3 (it gives 1/fz2) 
and elimination of bath's variables gives the factors of the 
following form: 

i"" e-iwa,lfi (A,,(t)A,,) dt. (1.3) 

alWork supported in parts by the Alexander von-Humboldt-Stiftung and 
the Polish Ministry of Higher Education, Science and Technology, project 
MRI. 7. 

blHumboldt fellow, on leave of absence from University of Gdansk, Insti­
tute of Theoretical Physics, Gdansk, Poland. 

where 

Aa(t) = exp[(i/fz)HRt] Aa exp[ - (i/fz)HRt], 

Aa-bath's operators. HR-HamiItonian of the bath. and 
( ... )-mean value with respect to the bath's state. The inte­
gral (1.3) can be formally written as 

(1.4) 

and therefore we finally obtain the 1/fz factor. 
Consider an open quantum system of n degrees offree­

dom. In this case we assume that the operators H. Va. V~ in 
(1.2) are generally unbounded functions of position and mo­
mentum operators [qk,Pk J fulfilling the conditions of Ref. 
6. 

The solution of the equation of motion is described by 
the space-time propagator A,(q". q" Iq'. q) in the Liouville 
space which is defined by the requirement that the density 
matrix of the systemp,(q. if) evolves in time according to the 
integral transformation 

p,(q". if") = f A,(q". if"lq'. q) 

XPo(q'. q)dq'dq. (1.5) 

where q = (ql' q2 • .... qn), if = (if I. if2' ...• 'in). By the semi­
group property one can formally express the propagator A, 
in terms of the path integral on the product phase space 
r xi' = [(qk.ifk;h,Pk). k = 1, 2 ..... n J. Such a formulation 
is presented in Sec. 2 in a formal way and we do not discuss in 
detail the problems concerning the discretization and limit­
ing procedure in the definition of the path integral because 
they are similar to those in ordinary quantum mechanics. 8-1 I 

We are able to calculate the path integral for a few sys­
tems only. so various approximative methods are invoked. 
We apply here the method of the stationary phase approxi­
mation9.11-15 which in our case of the dissipative quantum 
system leads to the notion of the complex extremal trajector­
ies in the ficticious complex product phase-space (Sec. 3). 
These trajectories are the solutions of the corresponding 
"semiclassical" ordinary differential equations. 

In some applications the Hamiltonian of the system can 
be approximated by the quadratic form and the dissipation 
effects are "linear," which means that the operators [ Va J in 
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(1.2) are linear functions of 1.0, q j. For such "quadratic" 
open systems the path integrals are Gaussian and the station­
ary phase approximation gives an exact result, so the prob­
lem of evaluation of the propagator AI reduces to a solution 
of ordinary linear nonhomogeneous differential equations 
(Sec. 4). We solve such equations in the case of one degree of 
freedom and obtain the explicit expression for the propaga­
tor for the harmonic oscillator with damping and pumping 
(Sec. 5) and the Brownian particle in a constant field strength 
(Sec. 6). The similar one-dimensional models were already 
studied2.5 in the Heisenberg picture and the dynamics were 
described by the expressions for the time evolution of Weyl 
operators W(x,y) = exp ;(xp + yq), but the manifest form of 
the propagators was not known. 

Although the investigation of quadratic systems can be 
done without path integrals and stationary phase approxi­
mation we treat the presented results as a first step towards 
the investigation of more complicated nonlinear dissipative 
quantum systems. A nonlinear toy model is studied in Ref. 7. 

2. PATH INTEGRALS IN LIOUVILLE SPACE 

We study the quantum physical system described by the 
Hilbert space~. It is convenient to introduce the so-called 
Liouville space l6 which is the Hilbert space .2"2(JY') of all 
Hilbert-Schmidt operators acting on ~ with the following 
scalar product: 

(A IB) = triA * B), A, BE.2"2(JY'). (2.1) 

Liouville space contains both the mixed states of the 
system (density matrices) and those observables which are 
represented by the Hilbert-Schmidt operators. 

Let us consider the quantum system S of n degrees of 
freedom with a configuration space R". The Hilbert space is 
isomorphic to L 2(R") and the Liouville space as a space of 

I 

ap,(q,ij) 

at 

where 

; A __ 

= - -,; .2"(Q, P, Q, Plp,(q, ij), 

square integrable integral kernels is isomorphic to L 2(R2"). 
We introduce the following notation and definitions. 

p(qlq)-density matrix or alternatively the arbitrary 
vector of the Liouville space L 2(HZ

"), (2.2) 

Qk' Pk, Ok'~' k = 1,2, ... ,n-self-adjoint operators 
on Liouville space defined as 

(Qk p)(q, q) = qk p(q, ij), 

(Pk p)(q, q) = -;fI 2
0 

p(q, ij), 
uqk 

(2.3) 

(Ok p)(q, q) = qk p(q, ij), 

(~ p)(q, ij) = ifl o~ p(q, ij), 
qk 

Iq, q), !p, p)-improper eigenvectors of (Q, 0), (P, Pl. 
Equation (1.2) for H =H (ft, q) and Va = Va (ft, q) can be writ­
ten as a differential equation for the density matrixp,(q, ij): 

!p,(q,q)=L(q, ~ ,q, :q)p,(q,q). (2.4) 

Let A -A (ft, q) and B =:=B (ft, q), then 

(A 'p)(q, ij) = A ( - ifl ~ ,q }(q, ij) = A (P, Q lp(q, ij), 

(2.5) 

(p·B *)(q, if) = .8(;fI :q ,qr(q, if) = .8(p, Qlp(q, if), 

(2.6) 

where if B (p, q) = ~a"'npmq" then .8(ji, q) = Uimnpmq" with 
am" the complex conjugate of am" and Ip, ill denotes here 
1.0, ql, IP, Q j, or IP, Ql· One can writeEq. (2.4) in a follow­
ing form: 

(2.7) 

.Y(Q,P,Q,P)~ IH(P,Q)-H(P'Q)} +UI \2Va(P,Q)Va(P,Q)- V!(P,Q)Va(P,Q)- V!(P,Q)Va(P,Q)I. (2.8) 
a 

Following the analogy between standard Hilbert space (Schr.Qdinger equation) and Liouville space [Eq. (2.4)] one can repre­
sent the propagator A,(q", q" Iq', if) = (q\ q" lexpl - (ilh ).2"t llq', if) as the formal path integral,9-15 

A,(q", q"lq', if) = [,.if' DqDqDPDPexp{l..- (' dr[pq _ pq _ .2"Y]}, 
Of fI Jo (2.9) 

where YY=.2"Y(q, p, q, j) depends on the limiting procedure 12-14 or discretization r and differs in general from the "classical 
Liouville function" 

.2"cl(q,p, q,j) = 2'(Q-q, P-p, Q-q, ~j)IIi=o 

= HcI/p, q) - Hc11ft, ij) + U L \2 Va /p, q)Va 1ft, if) - IVa /p, qW - IVa 1ft, if) 12j (2.10) 
a 

by terms of order fl. 

For example, if H (ft, q) and Va (ft, q) are given in antistandard ordering !p at the left-hand side of q) then the path integral 
(2.9) can be defined as a formal limit 
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A,(q",ij"lq',q) = lim II dq(lldil ll II ---P-exp ~ L p(llq -q _pllq -q _H(p(ll,q(ll) J N N+I dpUl d~ll {'€N+I[ (ll U-II ;;(ll ;;(j-II 

N~oo j=1 j=1 (21T1it (21T1it Ii j=1 € € 

+ H /jJll, illl) + i,,1, ~ (2 Va (P(ll, qU - I)JVa /jJll, il j 
- II) - Va (pUl, q(ll)Va (pUl, qU - II) - Va /jJll, i['1JVa /jJll, il j - II)]}, 

t 
€=---. (2.11) 

N+I 

The existence of the limit (2.11) is of course a major problem 
also for the standard path integrals in quantum mechanics so 
we only note that the path integral (2.9), because of an imagi­
nary part in the "classical action," possesses the properties of 
both Feynman and Wiener integrals. This imaginary contri­
bution may regularize the oscillatory behavior of the Feyn­
man integral but a more rigorous treatment remains to be 
done. 

3. STATIONARY PHASE APPROXIMATION 

Very few path integrals can be evaluated exactly so we 
need various approximate methods. One such approach is 
the so-called stationary-phase or semiclassical approxima­
tion.8.9.11-14 In this approach the propagator A, is approxi­
mated by the expression A ~Iass, which can be treated as a 
leading term in the formal expansion of A, with respect to 
the "small parameter" Ii. The formal but systematic ap­
proach to this problem is given in Refs. 11-14. Summarizing 
these results we can write for the case of Eq. (2.7) 

A ~Iass(q", ij" Iq', if) 

=ff,(q", ij"lq', q)exp{~ Wextr(t)}, (3.1) 

where Wextr is a stationary value of the generalized action 

W(t)= L [(Pq-pq]-2'cdq,p,ij,p)]dt' (3.2) 

which fulfills the equation 8 W (t ) = 0 and is given by substi­
tuting in (3.2) the solution of the following equations 15.7: 

. J2'cl 02'cl 
q k = op k ' P k = - oq k ' 

(3.3) 

. 02'cl ~ 02'cl 
ijk = - OPk ' Pk = Oqk 

with the boundary conditions q(O) = q', ij(O) = if, q(l) = q", 
ij(l) = ij". 

The pre-exponential factor ff, contains the well­
known Van Vleck's determinane I and some extra terms also 
(see detailed discussion in Refs. 12-14). The construction 
(3.1) relies on the existence of a unique classical solution of 
(3.3). Here the classical solution is complex and not unique. 
The similar problem was studied by Knoll and Schaeffer l7 in 
the case of the complex potential IS and they have met the 
phenomenon that whereas for multiple real classical paths a 
simple summation has to be performed II for mUltiple com­
plex classical paths the set of paths that contribute has to be 
determined separately. We expect here that for a large class 
of systems at least in the case of weak dissipation (small A )the 
main contribution is given by the unique path with finite 
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I 
action in the limit ,,1,-0. 7 The application of the full formulas 
(3.2) to the simple toy model and the discussion of the classi­
cal solutions are presented in Ref. 7. In the present paper we 
study the quadratic systems for which all difficulties disap­
pear: the path integrals are Gaussian and therefore can be 
well defined; the stationary phase approximation is exact 
and the classical solution is unique, the pre-exponential fac­
tor ./V, depends only on t and can be easily calculated using 
the trace preserving property 

J dq A,(q, qlq', if) = 8(q' - if)· (3.4) 

However, even in this case the formulas (3.1) provide the 
simplest method to derive the manifest form of the 
propagator. 

4. OPEN SYSTEMS WITH QUADRATIC GENERATORS 

Consider the quantum mechanical system of n degrees 
offreedom, the dynamics of which is described by the dyna­
mical semigroup (1.2) with quadratic Hamiltonian (we use 
summation convention) 

H (ft, q) = ~ akl PkPI + ~Uklqkql 
+ ~kl(ftkql + qlPk) + (7kPk + Klql (4.1) 

and operators ! Va J linear in P k' q k , 

Va=a~Pk+b~qk' (4.2) 

The Liouville function (up to some irrelevant constant) is 
given by the following expression (A =1): 

2'(p, qlp, ij) = H (p, q) - H (jj, ij) 

- ~ !Akl(PkPI +PkPI - 2pdl) 

+ Bkl(qkql + iikiil - 2qkiitl 

- 2iMkl (jjkql - hijl) 

+ 2Kkl (PkQI + Pkijl - hijl - Pkql)J, (4.3) 

Here 

Akl = A;k = L a~ar, Bkl ='Btk = 2}~bf, 
a a 

(4.4) 

Kkl = Kkl = Re L iTtb f, Mkl = Mkl = 1m L iTtb f· 
a 

In order to evaluate the propagator for the quadratic system 
one must solve the "semiclassical" equations (3.3). Introduc­
ing the more convenient new variables 

Sk = (qk + ijd, 11k = (qk - ijd, 
(4.5) 
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one can obtain the following equations: 

TJk = (Akl - Mkl)'Y/1 + (akl + iA %1)8/> 
(4.6) 

such systems (with some simple choice of parameters) were 
studied in several papers using the operator formalism and 
the Heisenberg picture. 2,5 

Ok = - (Ukl + iB%d'Y/l - (Akl + M kd81, 

tk = (Akl + Mkdsl - 2iKkl 'Y/l 

The Liouville function for our model is given by 

!f(p, qlP, ij) = H (p, q) - H rp, ij) 
_ (i/2) I a2(p - i)2 + b 2(q _ ij)2 

+ (akl - iA %d1T1 - 2iA klOI + 2ak' 
(4.1) 

+ 2k (q - ij)(P - i) - i2p,rpq - pij) J ' 
(5.1) 

irk = - (Ukl - iB%I)SI + 2iBkl 'Y/l 
- (Akl - M kl )1T1 + 2iKklBI - '2Kk· 

Here B Q (or A ') denotes the antisymmetric (or symmetric) 
part of the matrix. 

We prove in the Appendix that the extremal value of the 
generalized action Wextr (t ) is given by a very simple 
expression, 

where 

+ap+Kq, (5.2) 

O<cuo, O<m, A, a, K, a, b, k, ttER, and the matrix 

[ 
a2 k + itt] 

k - itt, b 2 

Wextr(t) = Hsdt)odt ) - SdO)Ok(O) 
+ 'Y/k(t)1Tdt) - 'Y/dO)1TdO)) 

is positive definite. Therefore, the semiclassical equations 
are the following. 

- ~ ak f Bk(r)dr - ~ Kk f 'Y/k(r)dr. (4.8) 

5. QUANTUM HARMONIC OSCILLATOR WITH 
PUMPING AND DAMPING 

We apply the results of Sec. 4 to a system of one degree 
of freedom (harmonic oscillator). The special examples of 

I 

~ = (A - p,)'Y/ + (l/m)8, 

0= - mcu6'Y/ - (A + tt)O, 

t = (A + tt)S + (l/m)1T + 2ik", - 2ia2B + 2a, 

ir = - mcu6S - (A. - tt)ff + 2ib 2", + 2ikB - 2K. 

(5.3) 

One can solve these equations and put the solutions into the expression for the propagator (3.1). Using (3.1), (4.7), and (3.4) we 
obtain the following final result for the underdamped case (cu6 >,1 2): 

A,(q", q"lq', q') = (mcue-!"I21Tisincut I)exp{ ~ W(t)}, (5.4) 

where 

W (t I = (mcuo/2 sin cut ) I [(q" - Z)2 - (q" - zf] cos(cut + (fJ I + [(q' - zf - (q' - Z)2] cos(cut - (fJ ) - (q' + q' - 2z)(q" - q") 
X eI"cos (fJ - (q" - q" - 2z)(q' - q')e -!"cos (fJ J - (iml4sin2cut ) 

X IA (t; tt, (fJ, X, t{!)(q" - q"f - A (t; - tt. - (fJ, - X, - t{!)(q' - q')2 + B (t )(q" - q")(q' - q) I (5.5) 

and 

z = [alA - p,) - Kim] 
cu2 +;.t2 

A (t, tt, (fJ, X, t{!) = {r cos (cut + (fJ )cos(UJt + X) - re2IJ-tcos (fJ cos X - D cos(cut + t{!)sin cut I 
B (t ) = I re""cos (fJ cos(cut - xl - re -IJ-'cos (fJ cos(cut + X) + rel"cos X cos(cut - (fJ) - re -IJ-'cos X cos(cut + (fJ ) 

+ D (eI" + e -!J-I lcos t{! sin cut J. 
Here 

A. = cuosin (fJ. cu = CUocos (fJ, (fJE[O,1T/2], 

r cos X = 2 1 2 {kCU(p, - A. ) + ma2[CU~CU + ttcu(p, - A. )] + ~ cu}, 
(cu +tt Itt 2 2m 

r . 1 {k (~ 2[ 2 cu~ J b 2 } sm X = /I, - ttl + ma (cu + Att) - - - - , 
CUZ +tt2 2 2m 

1373 J. Math. Phys., Vol. 23, No.7, July 1982 Robert Alicki 

(5.6) 

(5.7) 

1373 



                                                                                                                                    

As was pointed out by Lindblad,:; if It < 0 then we have the damping oscillator with the asymptotic stationary state P ao • 

Therefore, for any initial state p we have 

limA,p=pao' 
'-ao 

(5.8) 

It is equivalent to the following relation for the propagator: 

lim A,(q", irlq', ij) = p", (q", q")t5(q' - ij). 
'-00 

(5.9) 

One can check after long but simple calculations that for our example, if It < 0, w~ > I/. 2 then 

( ;;'\ (mwocos q; )112 mwo {cos q; ( - 2z)2 1 Poo q,q,= exp-- -- q+q- - -----
- ftrr cos X 41i cos X 4r cos q; cos X 

X [r 2sin2(q; - X) + D 2COS2"p + 2rD (sin(q; - "p)cos X + sinlK - "p)cos q;)] (q _ if)2 

+ i[sin(q; - X) + Dr -leas "p] (q + q _ 2z)(q _ if)}. 
cos X 

(5.10) 

The formula (5.10) describes a well-defined density matrix because the conditions It < 0, w~ > I/. 2 impose cos q; >0, cos X < 0. 
If It > 0 we have a pumping oscillator and the energy grows to infinity. This describes the interaction with the reservoir at 

the negative temperature (e.g., laser). 

6. QUANTUM BROWNIAN PARTICLE IN A CONSTANT FIELD STRENGTH 

Consider a quantum particle in one dimension being under the influence of a translationally invariant reservoir described 
by the quadratic generator and the constant force! It follows that 

It = -I/., wo = 0, (j = 0, K = -/ (6.1) 

Moreover we assume for simplicity k = 0. The free Brownian particle was studied by Lindblad in the Heisenberg picture.5 We 
have the semiclassical equations 

~=y1]+(lIm)O, 0=0, t=(lIm)1T-i2a28, 17'= -Y1T+i2b 21]+2! (6.2) 

Herey=U. 

Using the method presented in Sec. 4 we obtain the following propagator: 

A,(q",q"lq',ij) = my exp{~W(t)}, 
217'( 1 - e - Y') Ii 

(6.3) 

where 

W() my 
t = 2(eY' _ 1) 

X {[(q" - q') + (q" - ij)][(q" - q") - (q' - ij)eY'] + :~ [(eY' - 1 - yt )(q" - q") + (1 - eyr (1 - yt ))(q' - ij)]} 

- i[2y(eY' - 1)(1 - e - Y')] -I ( [ - b 2A (y,t) _ a2m2,yte- Y' }(q" - q")2 + [b 2A ( - y, t) _ a2m2,yteY' ](q' _ ij)2 

+ [b 2(e - yr - eyr + 2yt) + 2a2m2,yt ](q" - q")(q' - ij) I. (6.4) 

Here 

(6.5) 

These formulas can be checked by comparison with some particular simpler cases 19.20 (one can find that there are a few 
mistakes in a propagator for the particle in a linear stochastic potential given in the author's paper20 which, however, do not 
change the physical suggestions). 

In order to have a more physical picture one can evaluate the density matrix for very large t assuming that the initial state 
is a pure state given by a Gaussian packet with a mean position equal to zero. 

For sufficiently large t and for y> ° (damping case) we have 

Pr(q, if)e:..ff, exp{ _ [m2r (q + q _ 2/ t)2 _ imb 2 (q + q _ 2/ t)(q _ if) _ !L (q -if) + ~ (q _ if)2]}. 
16mt my 8mt my yIi 4y1i 

(6.6) 

where a = !b 2 + !a2m2r. 
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The probability distribution in a position space has the 
classical form 

P,(q) = p,(q, q) 

A/' { m
2
y2 ( )2} = ./r ,exp - 4a~ q - vot , (6.7) 

vo=L. 
my 

One can transform the density matrix (6.6) to the momentum 
representation and obtain the probability distribution in mo­
mentum space, 

(6.8) 

where Po = umvo, u = (1 - b 2!4a),! <u < 1. Comparing 
with the classical results we have the diffusion constant 

D=I7a!m2y2 
and temperature kT = fib 2/2my. 

Therefore, the classical relations 

D = kT !my and u = 1 

are never fulfilled exactly for this model because here 
kTlmy=D2(I-u). 
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APPENDIX 

The generalized action (3.2) for the quantum open sys­
tem can be transformed to the following form: 

W(t) = !(Pkqk - Pkqk )I~ 

+ L \ H(Pkqk - Aqd - !Pkqk - Aqd] 

- 2'c\(P, q~, q)J dt'. (AI) 

For quadratic systems one can introduce the notation 

x = \x t",x4n J=\Pk' qk,Pk' qk' k = 1,2, ... ,n J 

and the action W(t) can be written as 
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W(t) = !(Pkqk - Pkqk )I~ 

+ L \ !Japxaxp - VJapXaXp - caxa J dt', 

where 
(A2) 

Jap = -Jpa , Bap =Bpa· 

Consider an extremal trajectory \ xa (t ') J for which 
8W(t) = O. Therefore, if Xa = xa + 8xa with the boundary 
conditions 8xa (0) = 8xa (t ) = 0 we also have 

0= 8W(t) = L \ (Jpaia - BPaxa - cp)Oxp J dt'. (A3) 

It follows that 

Jpaia - BPaxa - cp = O. 

Substituting (A4) into (A2) and remembering that 

cpxp =Uk(Pk -Pk) + Kk(qk -qk) 

[c.f. (4.1) and (4.3)], we finally obtain (4.7). 

(A4) 

IE. B. Davies, Quantum Theory ojOpen Systems (Academic, London, 
1976). 

2A. Kossakowski, Rep. Math. Phys. 3, 247 (1972). 
,'v. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudar­
shan, Rep. Math. Phys. 13, 149 (1978). 

'G. Lindblad, Commun. Math. Phys. 48,119 (1976). 
~G. Lindblad, Rep. Math. Phys. 10, 393 (1976). 
'E. B. Davies, Rep. Math. Phys. 11,169 (1977). 
7R. Alicki, F. Langouche, and D. Roekaerts, "Semiclassical approxima­
tion for a class of quantum dynamical semigroups," Physica (to appear). 

"R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals 
(McGraw-Hili, New York,1965). 

91. Klauder, Phys. Rev. D 19, 2349 (1979). 
1°F. Langouche, D. Roekaerts, and E. Tirapegui, Phys. Rev. D 20, 419 

(1979). 
"M. S. Marinov, Phys. Rep. 60,1 (1980). 
12F. Langouche, D. Roekaerts, and E. Tirapequi, in Functional Integration, 

theory and applications, edited by I .-P. Antoine and E. Tirapequi (Plenum, 
New York, 1980), pp. 191-204. 

13M. M. Mizrahi, 1. Math. Phys. 22,102 (1981). 
I4F. Langouche, D. Roekaerts, and E. Tirapequi, "WKB-expansion for 

arbitrary Hamiltonians," Nuovo Cimento B (to appear). 
ISR. Alicki, "Path Integrals for Open Quantum Systems," preprint (1979). 
lOG. G. Emch, Helv. Phys. Acta 37,532 (1964). 
171. Knoll and R. Schaeffer, Phys. Rep. 31, 159 (1977). 
18D. W. McLaughlin, 1. Math. Phys. 13, 784 (1972). 
I~. Szczesny, M.D. thesis, Gdansk, 1980 (in Polish). 
2°R. Alicki, Phys. Lett. B 89,373 (1980). 

Robert Alicki 1375 



                                                                                                                                    

On inverse problems for plane-parallel media with nonuniform surface 
illumination 

c. E. Siewert 
Mathematics and Nuclear Engineering Departments, North Carolina State University, Raleigh, North 
Carolina 27650 

W. L. Dunn 
Operations Analysis Division, Research Triangle Institute, Research Triangle Park, North Carolina 27709 

(Received 1 December 1981; accepted for publication 5 February 1982) 

Elementary considerations are used to solve the inverse problem in linear transport theory for 
the case of variable illumination over the surface of a plane-parallel layer. The developed 
formalism yields as a special case the inverse solution for the classical searchlight problem. 

PACS numbers: 05.60. + w 

I. INTRODUCTION 
The inverse problem in radiation transport theory is 

concerned with the determination of scattering and absorb­
ing properties of a medium from a set of measurable radi­
ation quantities. In the past few years considerable work re­
garding exact solutions of such inverse problems has been 
reported. 1-8 However, all of these papers l

-
8 have dealt with 

the case of an infinite plane-parallel layer illuminated uni­
formly over each of the two free surfaces. From a practical 
and/or experimental point of view, such problems cannot be 
easily realized, and so here we report a solution for a class of 
inverse problems that allows the incident radiation to vary 
over the surfaces. 

We employ a notational scheme similar to that used by 
Rybicki9 in a study of the searchlight problem, and thus we 
write the radiation transport equation as 

J J 
J.l-I(z, p, G) + 00' -I(z, p, G) + I(z, p, G) 

Jz Jp 

= 4: J JI(Z, p, G'lP(G·G')dG', (1) 

where z and p, which lies in the x-y plane, locate in optical 
units the position in the homogeneous medium and 
G = Gtu, ¢ ). with J.l = cos (8). is a unit vector that defines 
the direction of propagation (see Fig. 1). In addition, 00 is the 
projection of G in the x-y plane and c < 1 is the albedo for 
single scattering. We consider that I(z, p. G) satisfies Eq. (1) 
subject to the boundary conditions 

1(0. p. G) = I l ( p. G). J.l > O. ¢E[O. 21T], (2a) 

and 

I (a, p. G) = 12( p, G), J.l < O. ¢E[O, 21T], (2b) 

where I l ( p, G) and 12( p, G) are assumed to be given and to 
have two-dimensional Fourier transforms. Expanding the 
scattering law in terms of Legendre polynomials, we write 

p(G.G') = I PI PI (G.G'), Po = 1. (3) 
1=0 

or, if we use the addition theorem, 
00 I 

p(G.G') = I I f3'!'P'!'tu)P'!'tu') cos [m( ¢ - ¢ ')]. 
1=0 m=O 

(4) 

Here we use P '!'tu) to denote the associated Legendre func­
tions. 

(5) 

and 

pm=(2-o ){l-m)!p. 
I O,m (l + m)! I 

(6) 

We assume that. in general, the quantities I (0. p. G). for 
J.l < 0 and ¢E[O, 21T]. and I (a. p, G). for J.l > 0 and ¢E[O, 21T]. 
can be determined experimentally. and we seek to express 
the single-scattering albedo c and the coefficients f31 in the 
Legendre expansion of the scattering law in terms of these 
quantities, 

II. ANALYSIS 

We can multiply Eqs. (I) and (2) by exp (ik. p) and inte­
grate, for fixed z, over the x-y plane to find 

z 

y 

k 

FIG. I. The geometry for n. 00, p, and k. 
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/1-~ '/I (z, /1-, 4> ) + [1 - if(P, 4> )] '/I (z, /1-, 4> ) 
Jz 

= ~ (211"fl '/I(z, /1-',4> ')P(O· O')d/1-'d4>' 
41T Jo -I 

and, for /1- > 0 and 4>e[O, 21T], 

'/I (0, /1-,4> ) = '/II(P, 4> ) 

and 

(7) 

(8a) 

(8b) 

where we suppress the dependence on the vector k, which is 
in the x-y plane as shown in Fig. 1, and write 

'/I (z, /1-, 4> ) = I II (z, p, O)e,lt. Pdp, (9) 

'/11(/1-,4» = I III [ p, O(p, 4> )]e,lt'Pdp, (lOa) 

and 

'/12(/1-,4»= II 12[ p,O(-/1-,4»]e,lt· Pdp. (lOb) 

In addition, 
j(p, 4» = k·ro = k (1 _/1-2)112 cos (4) - t/J), (11) 

with k = Ikl. We now follow an earlier work4 and let 

F(z, /1-,4» =/1- ~ '/I(z,/1-, 4» (12) 
Jz 

so that we can change /1- to -/1- in Eq. (7) and write 

F(z, -/1-,4» + [1 - if(/1-, 4»] '/I(z, -/1-,4» 
c oc I 

=- I I (- I),-mp,(,p"/'(p) 
41T 1=0 m=O 

1
2

" 
X 0 '/I'('(z, 4> ') cos [m( 4> - 4> ')]d 4>', (13) 

where 

Cf/'('(z, 4> ) = J~ ,P'('(P)Cf/(z, /1-,4> )d/1-. (14) 

We can multiply Eq. (13) by Cf/ (z,/1-, 4> ) and integrate over all/1-
and 4> to find 

(2"fl 
To(z) + Jo _ 1[1 - if(P, 4> )] Cf/ (z, /1-, 4> ) '/I (z, -/1-, 4> )d/1- d4> 

c '" I 
= - I I (_I)'-mp['[c'('(z) +S,(,(z)], (15) 

41T 1=0 m=O 

where 

C;"(z) = (f7T Cf/'('(z, 4» cos (m 4> )d4> Y. (16a) 

S '('(z) = (f" Cf/ '('(z, 4> ) sin (m 4> )d4> r (16b) 

and 

(2"JI 
To{z) = Jo _ I Cf/ {z, /1-, 4> )F (z, - /1-, 4> )d/1- d4>. (17) 

Ifwe now differentiate Eqs. (15) and (17) and use Eq. (13) we 
can deduce that To(z) is a constant, and on considering Eq. 
(15) at z = 0 and z = a and subtracting the two resulting 
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equations, we find 

C ool 

So = - 2:, 2:, ( - 1(- m{3'(' 
81T 1=0 m =0 

X [C '('(0) - C '('(a) + S '('(0) - S '('(a)], (18) 

where 

So = f7T f [1 - if(P, 4> )][ Cf/ (0, /1-, 4> )Cf/ (0, -/1-,4» 

- Cf/(a, /1-,4> )Cf/(a, -/1-,4> )]d/1- d4>. (19) 

As we consider I(z, p, 0) to be known on the boundaries, 
Z = 0 and z = a, the unknowns in Eq. (18) are c and the coef­
ficients ({31 J. Thus we define 

K m = (2 _ 8 )( _ 1 )1- m (/ - m )! 
I O.m (/ + m)! 

X [C,(,(O) - C'('(a) + S'('(O) - S;"(a)] (20) 

and write Eq. (18) as 

So= 8: {['/Io(OW- [Cf/o(alF+ 1~1{3lmtoK;"}, (21) 

where 

(22) 

Clearly for the case of isotropic scattering {31 = 0, I> 1, and 
Eq. (21) yields the concise result 

c = 81T{ ['/Io(OW - [Cf/o(a)f} - ISO' (23) 

On the other hand, if we assume that {3J = 0 only for I> L, 
then Eq. (21) is a single equation for the L + 1 unknowns c 
and ({31 J. As the equation is linear in c and (C{31 J we clearly 
can consider utilizing L + 1 different experiments, L + 1 
different values ofk, or a combination of the two to generate 
L + 1 linear algebraic equations which, in principle, yield 
without approximation the desired solution of the inverse 
problem. 

To complete this section we note for k = 0 that Eqs. (7) 
and (8) reduce to forms previously considered l

-
s and thus 

that in principle several solution techniques may apply, for 
example, in the event that a sufficient number of indepen­
dent experiments is considered, that the boundary condi­
tions lead to a radiation field that has sensitive dependence 
on the azimuthal angle, or that the scattering law is limited 
to three terms. By developing a solution here for the k =1= 0 
case we clearly introduce the possibility of determining the 
required scattering coefficients from a single experiment, for 
a general class of boundary conditions and for a scattering 
law more general than the three-term model. 

III. THE SEARCHLIGHT PROBLEM 

As a special case of the foregoing we now consider the 
classical searchlight problem. We thus write 

1 II{ p, 0) = - 8( p)8(P - /-l0)8( 4> - 4>0) (24a) 
21Tp 

and 

(24b) 
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where we use the polar coordinates p = I p I and a to locate a 
field point in the x-y plane. Using Eqs. (24) in Eqs. (10), we 
obtain 

'/11 (p, t/> ) = D(P - 11-0)D ( t/> - t/>o) 

and 

'/I2(P, t/> ) = 0, 

so that Eq. (19) becomes 

So = [I - ij(po, t/>o)] 1/1 (0, - 11-0' t/>o)· 

Equations (16) now yield 

e,(O) = (p,(Po) cos (mt/>o) + ( - 1)1- m 

X fIT f 1/1(0, -11-, t/> )P,(P) cos (mt/> )dl1- dt/> Y. 
S ,(0) = (p ,(Po) sin (mt/>o) + ( - 1 )1- m 

X fIT f 1/1(0, -11-, t/> )P,(P) sin (mt/> )dl1- dt/> Y. 

(25a) 

(25b) 

(26) 

(27a) 

(27b) 

e 7'(a) = (fIT f '/I (a, 11-, t/> )P ,(P) cos (mt/> )dl1- dt/> Y. (28a) 

and 

S,(a) = (f17I 1/1 (a, 11-, t/> )P,(P) sin (mt/> )dl1- dt/> y, (28b) 

and Eq. (21) can be written as 

81T[ I - ij(po, t/>o)] 1/1 (0, -11-0' t/>o) 

(29) 

IV. CONCLUDING REMARKS 

For the searchlight problem we note that Eq. (29) is our 
basic result for finding c and the coefficients [(3{ l in terms of 
the intensities on the two surfacesz = Oandz = a. To use the 
equation we must in general be able to measure 
1[0, p, a( -11-, t/> )] and I [a, p, alp, t/> j], for I1-E[O, I] and 
t/>E[O, 21T], experimentally and compute the quantities 
e ,(0), e ,(a), S ,(0), and S ,(a) with reasonable accuracy. 
As a first test of the solution we have considered the case of 
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isotropic scattering and used the Monte Carlo method to 
solve, for given values of 11-0' t/>o, and c, the direct problem. 
For numerous cases studied we found that the value of c 
computed from 

c = 81T[ 1- ij(po, t/>o)] 1/1(0, -l1-o,t/>oj(eg(O) - eg(aJ]-1 
(30) 

agreed with the given value, for various choices ofk, with an 
accuracy consistent with the accuracy of the Monte Carlo 
results for the exiting intensities. More complete testing of 
the general formulation is clearly required in order to evalu­
ate the extent to which basic results for practical experi­
ments can be extracted from this exact solution. 

It is clear that the inverse solution developed here for 
the infinite plane-parallel case requires that the incident ra­
diation be specified over the entire boundary and that the 
exiting radiation be measured experimentally over the entire 
surface. However, in the event that there is absorption in the 
layer and the incident radiation is sufficiently localized (as, 
for example, in the searchlight problem) the case of a plane­
parallel body finite in the transverse directions can be well 
approximated by the infinite plane-parallel case, and the de­
veloped inverse solution can be used with confidence. 
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Let Fbe the curvature of some connection on some principal bundle over R4. I show that if F 
decays as fast as (rlnr)-I as r tends to infinity, then 

_1_JtrF 2 

811"2 

is an integer. ifF decays like r- 2
, any real value is possible. There is an analogous statement for 

R21l(n > 2), although it fails for H2. 

PACS numbers: 11.l0.Np 

1. INTRODUCTION 

Let G be a compact Lie group and letp: G-+U(N) be a 
representation. Let Fbe the curvature of some connection on 
some principal G bundle over 54. The Chern number of the 
associated vector bundle is 

C2 = ~ ( trp(Ff· 
811 Js' 

According to the theory of characteristic classes, this quanti­
ty is always an integer. 

Now consider the curvature F of a connection on a prin­
cipal G bundle over ]R4. In this paper, we prove 

Theorem 1.1: If 

IF I <:C Ir Inr, r>2 

for some constant C, then 

1 i > - trp(F)-
sn2 R' 

is an integer. 
This formula is of interest in quantum field theory be­

cause the curvature F is the same as a Yang-Mills (gauge) 
field over Euclidean space. For discussions of related mat­
ters, see Refs. 1,2, and 3. 

If G is abelian or N = 1, the integer obtained in Theo­
rem 1.1 must be zero. If G = SU(N) (N) 1), any integer value 
is possible. 

It is not known whether the hypothesis of Theorem 1.1 
can be relaxed to the energy S R' IF 12 being finite, although 
this is suggested by Refs. 2,4, and 5. However, it is shown in 
Sec. 6 that (1!8r)s R.p(F)2 may not be an integer if we as­
sume only that IF I <:C Ir. This example is equivalent to the 
one given in Ref. 5, and has infinite energy. 

Theorem 1.1 is proved in Secs. 2, 3,4, and 5. Section 3 
gives a holonomy formula similar to the one in Ref. 6 and 
may be read independently of the rest of the paper. Section 7 
shows how to handle dimensions other than four. 

2. OUTLINE OF THE PROOF 

For the proof of Theorem 1.1 it suffices to consider the 
associated U(N) bundle. Hence we may, without loss of gen­
erality, take G = U(N) and suppress mention ofp. 

Relative to some trivialization of the bundle, the con­
nection A is a one-form on R4 with values in u(N). The 

curvature 

F=dA+A 2 

is a two-form on R4 with values in u(N). The Chern-Weil 
formalism (Ref. 7, p. 114) tells us that 

trF 2 = dtr(AF _ jA 3). 

LetS~ be the sphere of radius rin R4.1f IFI<:C Irlnr. Then 
trF 2 is integrable on a 4

• By Stokes' theorem, 

_1_ ( trF2 = lim_l_ ( tr(AF _ jA 3). 
8r JR' ,-",8r Js; 
Given E> 0 and r sufficiently large, we will show that 

there exists a smooth map T: S~-U(N) such that 

/-I-L tr/AF-jA3-tlT-ldT)31/ <!..... 
8r S; 2 

If we choose r large enough such that 

1
_ 1- { trF 2 - _1_ ( tr(AF - jA 3) 1 <!...., 
Sr JR' Sr Js; 2 

then it will follow that 

I 12 {trF 2
- 1_2 (tr(T- 1 dT)3!<E. 

811 JR, 2411 Js; 
We now recall a special case ofBott's work on periodic­

ity in K-theoryll. 
Theorem 2.1: For N>2 we have an isomorphism 

11" 3U(N )=Z given by assigning to a smooth map T: 5 3 -U(N) 
the integer 

1-2 L tr(T -I dT)3. 
2411 s· 

Thus for E> 0 there exists an integer n such that 

Is~ i,trF
2 

- n I <E. 

Hence (1 ISr)J H' trF 2 must be an integer. 

3. THE HOLONOMY PROPAGATOR 

Let Mbe the sector in R2 described by polar coordinates 
(r, 8) with O,r,ro and 0,8,80 , Suppose we have a connec­
tion A on the trivial principal G bundle. For this paper we 
can assume that Gis U(N), although Theorems 3.1 and 3.2 
hold for any Lie group. A is a one-form on M with values in 
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u(N). The curvature is F = dA + A z. 
For xEM let Cx : [0, l]_M be the curve 

Cx (t) = tx, O.;;;t.;;; 1. 

A section u: M-ff of the associated vector bundle is paral­
lel along c x iff it satisfies 

c~(du + Au) = O. 

The fundamental solution to this differential equation is the 
path ordered exponential 

If u is parallel along c x then 

u(x) = P exp( - LA }U(O). 

P exp - (fc,A ) is called the holonomy from Otox alongcx • It 
may also be defined as a product integral (Ref. 9, p. 15). 

then 

Theorem 3.1: If 

A (x) = -dTT~\ + T(LT~tFT )T~l. 

Proof Plugging in the vector a Jar, we get 

A (~) = - aT T ~ t, 
ar ar 

which follows from the definition of T. The vector alae gives 

A = - aT T~' + T(rT~lF. Tdr)T~' 
2 ae Jo 0 , 

where 

A = Al dr + Az de, 

F = Fodr /\de. 

To prove this, we first observe that 

_ aA I =~(aT T~') 
ae ae ar 

= aZT T~' _ aT T~,aT T~'. 
ae ar ar ae 

Hence 

:r[T~I(A2 + ~~ T~')T] 
_ T- ,aT T-'AzT + T~' aA z T+ T-IAz aT 

ar ar ar 
_ T~,aT T~,aT + T-

' 
a2 T 

ar ae arae 

= T~'A,AzT+ T-l aA
2 T 

ar 

- T-'AzA,T - T~' aA , T 
ae 

= T-'FoT. 

Continuity of A and dT· T ~ I at 0 requires that 
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limA2 = 0, 
r .0 

I· aT T- I 0 lm- =, 
r .0 ae 

so 

T~I(A2+ ~~T~I)T= fT~IFoTdr 
which gives the formula we wanted. 

Theorem 3.2: The holonomy from 0 to 0 along aM is 
given by the e-ordered exponential 

pexp( - LT~'FT). 
Proof Let 

VIr, e) = P exp(f f T ~ '~)T dr de ) 

with the ordering over e, so 

V(ro, eo) = P exp( - LT -1FT ). 

By Theorem 3.1, 

v=pexp[ - f"(T- IA2T+ T-'~~)de]. 
We compute 

~(TV)(TV)-' = Tav V-'T~' + aT T~I 
ae ae ae 

= - T(T- 1A2T+ T-'~~)T-I 
aT T~I 

+ ae 

= -Az' 

so by the uniqueness of solutions to this ordinary differential 
equation, there must be some W: M-G independent of e 
such that 

TV=Pexp( - f'Azde}w. 

Writing T = T (r, e ) and letting e = 0 we find that W 
= T(r, 0), so 

T(r, e )V(r, e) = pexp( - LOA z de) T(r, 0). 

Setting r = ro and e = eo gives 

V(ro, eo) = T(ro, eo)-Ipexp( - LO"A z de) T(ro, 0) 

which is precisely the holonomy from 0 to 0 along aM. 
Proposition 3.3. For anyone-form B and any curve c, 

(i) !pexp((8 )1.;;;exp(lIBI). 

(ii) 11 - pexp(l B )1.;;;lIB lexp(lIB I)-

Proof Straightforward. 
Corollary 3.4: If H is the holonomy along aM then 

11 - H I.;;;LIPI·exp LIPI. 
Roger Schlafly 1380 



                                                                                                                                    

4. ESTIMATES IN THE RADIAL GAUGE 

We now choose a gauge in which there is no holonomy 
in the radial direction. This means that A (alar) = 0 where r 
is the distance to the origin in R4. Define G: R4_U(N) by 

G(x) = pexp( - LA ). 
where 

cx(t)=tx, 0<;t<1. 

Proposition 4.1: (i) Replacing A by G - I A G + G - I dG 
(and Fby G -'FG) gives us a radial gauge. 

(ii) In this gauge, 

A(x)= LF. 
(iii) If C is a constant such that 

IF I <C Ir Inr 

for r>2 and 

IA I «C Ie) In In3 

for r = e = 2.718···, then for r;;d we have 

IA 1<2C(ln Inr)!r. 

Proof (i) and (ii) follow from Theorem 3.1. For (iii), 
write F = Fudr /\ dO, so 

A = ([ Fo dr) dO. 

Since Ide I = 1/1' and /F I = /Fol/r, we have 

IA 1</fFodr/ldel + If~)drlldOI 
<-In In3 + - --rdr C Ifr C 

I' I' e rlnr 
= (C Ir)ln In3 + (C Ir)ln lnr 

<2C (In lnr)!r. 

Proposition 4.2: For 1'> 3, there exists a constant K I such 
that 

I 
( trAFI<K,.lnlnr. 

J,.; Inr 

Proof The volume of S; is 21T'r" so 

li;trAF I <i;ltr AFI 

<Ni:IA I IFI 
<N 21T'r1 2C [(In Inr)!r](C IrInr) 

= 41T'NC 2 In Inr. 
lnr 

Proposition 4.3: Suppose 1'>3. If 

2C IA-BI<-, 
rInr 

then there exists a constant K z such that 

Ii trAJ-i trB31<K2' (In Inrf. 
s; s; Inr 
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• 

and 

so 

Proof We have 

JBJ<JB-A I + JA I 
<2C Irlnr + 2C (In Inr)!r 

<4C(ln Inr)/r 

IA 3 _ B 31 < 2C 3(4C In Inr)z 
rInr I' 

96C 3(ln Inr)2 

rlnr 

Thus 

1 i trA 3 - ( trB 31 <N ( IA 3 - B 31 
s~ )S~ Js~ 

<N 21Tr 96C 3(ln Inr)2/rInr. 

5. THE HOLONOMY AT INFINITY 

In this section, we restrict attention to S; for sufficient­
ly large r. C1, C2, ... , C13 will be constants independent of r. 

Fix some "north pole" pES ;, and some great circle r 
from p to - p. If xES; is not on the "equator" S ~, let c x be 
the shorter great arc from ± p to x. (There is a unique great 
circle in S; passing through ± p and x if xi- ± p.) For x in 
the "northern hemisphere," let T(x) be the holonomy along 
c x' For x in the "southern hemisphere", let T (x) be the holon­
omy along r concatenated with c x' Tis discontinuous on the 
equator S;. 

Lemma 5.1: There exists a constant C 1 such that if T" 
T2 are the two limiting values of T at a point x in S;, then 

IT] - Tzl<C/lnr. 

Proof Choose a surface S in S; having area <21T'r and 
boundary the union of r with the great semicircle from p to 
- p through x. Then 

l/F I <21T'r C Irlnr = 21T'C Ilnr. 

The holonomy around as is T] T 2- ], so by Corollary 3.4, 

IT, - T21 = 11- T]Tz-'I< (1Flexp (/Fl. Js Js 
We now choose C, so that for large 1', 

21T'C exp(21T'C)<~. 
lnr lnr lnr 

Let t: S ;-1R be the distance to p along S;. Let e = (e I, 

e 2) be local coordinates on S;, extended to S; by requiring e 
to be constant along each Cx ' 

Lemma 5.2: For any xES;, 

I (T-)FTI<~· J, rlnr 

Proof We suppose that x is on S;, that c x is taken to be 
the great arc from p to x, and that de ], de 2 are orthonormal 
at x. The general case will fillow easily. Note that 

Ide'l = csc(t 11'), Idt I = 1. 
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Let 

F = Fo,dt A dO I + Foztlt A dO 2 + F,ztlO I A dO 2, 

so 

LT-'FT= itJLT-'FoiTdt )dO
i
. 

Thus 

ILT-'FT I <it,LlFoi I dt 

<2 i 1Td

'IFI sin(;) dt 

<2-'£.r. 
rlnr 

Ifx is a point in the northern hemisphere (i.e., t < 1Tr/2), 
then we have by Theorem 3.1, 

A (x) = -dTT- ' + T(LT-'FT )T- ' . (5.3) 

If To is constant, the substituting ITo for T leaves (5.3) un­
changed. It follows that (5.3) is also valid if x is in the south­
ern hemisphere. Hence we have 

Corollary 5.4: (i) IA + dT T -II <2C /rlnr. (ii) IdT I 
< C2 (In Inr)l r for some constant C2• 

Given OE(O, I), let R be the set of points in S ~ with 
!1Tr - 0 < t < ~1Tr + 0, and let 

U(O) = lim T(t, 0). 
I ... ~1Tr--

From Corollary 5.4(ii), it follows that there exists a constant 
C, such that the inequality 

(5.5) 

holds on R. By Lemma 5.1, we can choose 0 sufficiently 
small that on R, 

IU - TI<2C,/lnr. 

We suppose that 2C,/lnr< ~ so thatf R-+u(N) may be de­
fined by the power series 

1= InU-'T= - ! ~(l- U-'T)". 
1l~ln 

Then 

1/1< f ~Il - U-'T I" 
n~ln 

\~I( ~~;)" 
4C, <--. 
Inr 

Let ¢J: R-+[O, 1) be a smooth function satisfying 

¢J(t)={1 Itl>l, 
o It I<!. 

Define T: R-+U(N) by 

T(t, 0) = U(O )exp[t,6 ((t - ~1Tr)/o)f(t, 0)] 

(5.6) 

and extend T to be a smooth function on S ~ by setting it 
equal to Ton S; - R. 

Lemma 5. 7: Let Vand E be matrix valued functions. 

1382 J. Math. Phys .• Vol. 23. No.7. July 1982 

(i) If V = eE then IdVI<eIElldE I, 
(ii) If II - V I <,u < I and E = In V, then 

IdEI<_I_ldVI. 
I-,u 

Proof This follows from differentiating the power series 
for exp and In. 

Lemma 5.8: There exist constants C4 , Co, C7 such that 
onR, 

(i) 

(ii) 

(iii) 

Proof (i) Apply Lemma 5. 7(ii) with,u = 4. 
(ii) By Lemma 5.7(i), -

IdTI<ldU le lfl + elf1ld/l + elf1ld [t,6 C -o~1Tr)] 11/1. 

Then, using (5.5), (5.6), and Lemma 5.8(i), 

IdT-1 4c'/lnr(c In Inr C In Inr Cs 4C, ) <e ,--+ 4--+---
. r r 0 Inr 

Co <--. 
t5lnr 

(iii) Similar, except that the term involving 15 is 
absent. 

Lemma 5.9: For some C<), 

I r tr(T-'dT),,- r tr(T-'dTf'l<c<)(lnlnrf . 
Js: Js: Inr 

Proof 

1l.,.tr(T-'dTf- l.:tr(T-'dT)JI 

= litr(T-1dT)J - itr(T-'dT)JI 

<NildTIJ + i1tr(T -'dT)l 

By Lemma 5.8(ii) and 5.8(iii), there exists CH such that 

Itr(T -'dTl"1 <CH(1/t5lnr)[(ln Inr)/rV 

The volume of R is bounded by 41Tro, so from Corollary 
5.4(ii) and the above, 

1l./r(T-'dTf - l.;tr(T-'dTfl 

<N 41Tro [(C2In Inr)/r] 3 + 41Tro CK (1/olnr)[(ln Inr)/r] 2 

< C<)(ln Inr)2/1nr. 

We now complete the proof of Theorem 1.1. From 
trF2 = dtr(AF - !A') and 

IF I <Clr2Inr, 

it follows that 
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N f-~( C )22 'd _C IO <-, -,- rrp p--. 
Srr- r p-Inp Inr 

From Proposition 4.2, 

1

1 f ' 1 1 :\ I In Inr -, trF-+--, trA- <C II--· 

8rr- H' 24rr- s.' Inr 

Corollary 5.4(i) shows that the hypothesis of Proposition 4.3 
is satisfied if B = - dT· T - I, so 

1

1 f ' I 1 -I , I (In Inr)2 -, trF- - --, tr(T dT) <;C I2·-'-----'-

Srr- H' 24rr- S; lnr 

By Lemma 5.9, 

I~ { trF 2 _ n I <Cu (In Inrf , 
Srr- JH' Inr 

where n is the integer 

_1_, ( tr(T--1dT)-', 
24rr-J<;.' 

The proof of Theorem 1.1 is now finished by letting r tend to 
infinity 

6. AN EXAMPLE 

Let T: S '-+SU(2) be the standard identification. Let w 
be the pull-back to 1R4 of T -I dTby the radial projection. 
The structural equation is 

dcu + w2 = O. 

Letf [0, 00 )_R be a smooth function satisfying 

fir) = {Oa O<;r<;, 
r>l, 

for some real number a. Using r for the radial coordinate, 
f(r)w is a well-defined smooth form on 1R4

, and we define it to 
be a connection on the trivial SU(2) bundle. 

We compute 

F = I'dr A w + (/2 - f)w2, 

so FEO (1/ r1). Also, 

F2 = 2(/2 - f)1' drAw-' 

has compact support and 

_1_ ( trF 2 = l~i"" 21'(r)(F(r) - fir)) dr i trw3 

sr? JR' 811 0 s' 
1 

= 8r? [~p(r) - F(r)] 0. 12 volumeS 3 

= 2a3 
- 3a2

, 

By varying a, we may obtain any real number. 

7. A GENERALIZATION 

Theorem 1.1 generalizes to the following situation. Let 
Gbe a compact Lie group and letp: G~U(N) be a representa­
tion. Let F be the curvature of some connection on some 
principal G bundle over R2n. Let 

en = [( - 1)n+ l/n]tr(p(F)/2rrW. 

If the connection extends to a connection on some bundle 
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over S 2", then the Chern number 'o of the associated vector 
bundle is S R'.Cn , This is an integer and is always divisible by 
(n - 1)1 (see Ref. 7, p. 77 or Ref. 11, p, 156). 

Theorem 7.1: Suppose n > 1. If there exists a constant C 
such that 

C 
IF I <-'-1-' r>2, 

r nr 

then 

1 {c" 
(n - l)ll",,, 

is an integer. Any integer value is possible if G = SU(N) and 
N>n. 

Proof The proof requires only minor modifications of 
the proof of Theorem 1.1, which we now discuss. According 
to the Chern-Weil theory (Ref. 7, p. 114), 

trF"=nd LtrlA [tF+(t 2 _t)A2],,-IJdt. 

It follows as before that in the radial gauge, 

{trF"=n((t2- t )"-ldtlim{, trA 211 - 1• 

JH i Jo r ~ClCJS~" 

An elementary integration by parts gives 

11 [In - 1),]2 
t " - I( I - t )" - I dt = . . 

o (2n - I)! 

Approximating A by - dT T - I for some smooth T: 
S ~-+U(N), we find that 

1 {e" 
(n - I)! JII'" 

is approximated by 

-I (n-l)! ( tr(T- l dT)21l-I, 
(2rril" (2n - I)! )s;" I 

This is an integer because it is the integral that gives Bott 
periodicity, K 

rr2n _ I UrN )~l, 

for n <N. The integral is zero if n > N. • 
The proof of Theorem 7.1 breaks down if n = 1. In or­

der to estimate the holonomy around a closed curve near 
infinity, we expressed the curve as the boundary of a surface 
where the curvature was small and used Corollary 3.4. But 
the sphere of radius r in R2n is simply connected only if n > 1. 

The following theorem shows that Theorem 7.1 actual­
ly fails if n = 1. 

Theorem 7.2: Let Fbe a two-form on 1R2 with values in 
some Lie algebra. Then F is the curvature of some connec­
tion on a principal bundle over 1R2. 

Proof Write 

F = fix, y) dx A dy. 

Then F is the curvature of the connection 

A (x,y) = (ff(X',y) dX') dy. 
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Various simple transport models of electron temperature in a confined plasma are reducible to the 
quasilinearequationp(x)u, = [c(x)u~ ] x + A (x)U S

, - I <x < 1, u( ± 1) = o. u is the temperature, 
p(x) the density, and c = g[ p(x)] the density -dependent part of the thermal diffusion. p(x) and c(x) 
may vanish at the plasma edge, rendering the problem singular. The temporal behavior depends 
critically on the boundedness of R = S ~: c-I(x) dx. If R < 00 then in the absence of heat sources, 
A =0, every initially given state u(x, 0) evolves toward an algebraically decaying, universal space­
time separable solution. Its existence and uniqueness is proved. The method developed in this 
work may be used to show the equilibrization of the solution in the presence of a heat source of the 
form A (x)U S

, s < n, p(x) > O. On the other hand, if R = 00 and A = 0 then the system becomes 
isothermalized: u-+u = S ~ : u(x, 0) pIx) dx/ S 1_ 1 pIx) dx > O. In such a case addition of heat 
sources will cause a thermal explosion. 

PACS numbers: 52.25.Kn 

I. INTRODUCTION 

Mathematical modeling of radial transport in a con­
fined plasma in its simplest formulation requires the solution 
of a quasilinear parabolic equation(s) in a fixed, bounded, 
domain. 1-10 In a tokamak, the presently most promising low 
f3 device, one distinguishes between energy and particle time 
scales, and it has become a common practice in theoretical 
calculations to treat each time scale separately. Thus calcu­
lations of thermal evolution, 2,3.10 or conditions for the set up 
of thermonuclear ignition 7.8 are done under the assumption 
of a stationary, homogeneous plasma. Here the rationale is 
that the particle confinement time is much larger than the 
energy confinement time. In the same spirit, in calculations 
of particle crossfield diffusion it is assumed that the plasma is 
in an isothermal state. 11.12 

In this work we will be mainly concerned with an 
asymptotic analysis of a certain mathematical model of a 
thermal evolution of a heated plasma. It will be assumed that 
the density is stationary but, unlike in previous studies, inho­
mogeneous. In fact, it is the study of the impact of in homo­
geneity that distinguishes this work from previous studies. 
Since the density has a low value at the limiter, it is natural to 
assume it to vanish at the boundary. Moreover, since as a 
rule, present day theories predict the electron thermal diffu­
sion to be density dependent such that it vanishes with den­
sity, the considered problem becomes singular. More will be 
said about this later. 

Using an energy equation, the radial evolution of plas­
ma temperature in a slab geometry, XE( - 1, 1), may be de­
scribed by 

aT a aT 
p-=-K1(p,x, T)-+4>(x, T,p), (Ll) at ax ax 

ai'fhis work was partially supported by U.S. Air Force Contracts AFOSR-
78-3602 and AFOSR-76-288I. 

where pIx) is the particle density, T is the temperature, and 
Kl is the perpendicular thermal conductivity; its form de­
pends on the collision mechanism assumed. 4> represents the 
volumetric heating of the plasma. 

We shall model Kl assuming it to be of the form Kl 
- paT" - I(X, t). Thus, for instance, a = 2 in the classical, 
neoclassical, and banana diffusion or a = 1 for the Bohm 
and plateau diffusion. 

Similarly, the heat sources considered will be of the 
form 4> = A (x)rs, where A = 0 (1), s = 1.5 for Ohmic heat­
ing in a constant electric field, and A = 0 (p2), S = 2 for alpha 
particle heating in the 6-20 ke V regime. 13 Reduced to nor­
malized units, the model equation to be studied is 

-( ) au a () au" A- ( ) s px -=-cx -+ xu, at ax ax XE( - 1, 1). (1.2) 

Consider next 

x-+y=R(x)= ~. L
x d 

o c(x) 
(1.3) 

If c-'(x) has integrable singularities, the case considered in 
this paper, ( - 1, + 1 )~( Yo Y2)' !Yi! < 00. Rescaling the in­
terval to ( - 1, 1) and defining 

x = Y, p( y) = c(x)P(x), 

A (y) = A (x)c(x), (1.4) 

Y--+x and we obtain 

au a2 

p(x)-=-u" +A(x)u S
, XE( -1,1), IU} at ax2 

u(-I,t)=u(+ 1,t)=0 (1.6) 

together with 

u(x, 0) = uo(x), XE( - 1, 1), (1. 7) 

with c(x), A (x), andp(x) that are known, bounded smooth 
functions ofx and may vanish at Ixl = 1. Equation (1.5) is in 
the form in which our results will be presented. Our main 
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concern will be with the purely diffusive case. Thus in what 
follows unless otherwise stated A (x)=O will be assumed. 

The asymptotic behavior of the solution oft 1.5), (1.6) for 
A (x)=O andp(x)=1 was studied in Refs. 1~17. (In Ref. 17 
this problem is studied in R N, N> I). It was shown there that 
the solution of such a problem converges to the separable 
solution ofEq. (1.5), namely, 

t I/(n - Ilu(x, 1 }-+Vo(x), 1---+00, 

where vo(x) is a nontrivial solution of 

(v")"+_I-v=O, v(±I)=O. 
n-I 

(1.8) 

(1.9) 

In the present work this result is generalized to the case 
p(x)#const. In particular pix) may vanish at Ixl = 1. In the 
diffusive case, A (x)=O, we prove the uniqueness (Theorem 
3.1) and existence (Theorem 3.2) of the positive separable 
solution of Eq. (1.5). This solution has the form 

I 
u(x, t) = v1(x), a = const, 

(0 + I)I/(n-I I 

where vl(x) satisfies Eq. (3.1). We prove also (Theorem 3.3) 
that if uo(x);¢:O then t I/(n - lIu(x, t }-+vl(x), t---+oo. Note that 
this result holds for n > I and that the algebraic rate of decay 
depends on n. For n < I the solution will be extincted within 
a finite time. 15.16 

The method for the diffusive case presented in Sees. 2 
and 3 may be used to study the asymptotic behavior of Eq. 
(1.5). More will be said in Sec. 4. 

Let us emphasize the importance of the integrability 
condition of c-I(x). [See Eq. (1.3).] Let c- I be nonintegrable 
over [ - 1, 1]. Now (1.3) maps ( - 1, 1 )---+( - 00, (0) and (1.5) 
defined in R I X (0, (0) becomes a Cauchy problem. If also 
A (x)=O, then, as was proved by us elsewhere, 18 

u---+u = {I u(x, O)p(x) dxl I~ /(x) dx>O as t~oo. 
In physical interpretation, in the nonintegrable case, c(x) in­
sulates the system thermally and hence the isothermaliza­
tion occurs. Clearly, if in this case a heat source is added, the 
solution of (1.5) will explode in time. 

We note that the vanishing of c(x), on the boundary 
causes the degeneration of the problem. For linear operators 
such types of problems are well known. 

Finally, recall that our problem models transport in 
axial symmetry. Therefore, one is naturally interested in c(x) 
being an even function of x. Consequently, c- I satisfies the 
same integrability conditions in both ends; a tacitly used as­
sumption throughout this work. As a mathematical prob­
lem, one may also be interested in the mixed case with c- I 

being integrable only at one end. This problem will not be 
considered here. 

2. SOME PROPERTIES OF THE SOLUTION 

We consider the problem 

au a2un 
p\x)iit= ax2 inQ= \lx\<l,t>Oj, 

u( - I, t) = u(l, t) = 0, 

1386 J. Math. Phys., Vol. 23, No.7, July 1982 

(2.1) 

(2.2) 

u(x, 0) = uo(x). 

We assume that pix) is a smooth function and 

p( ± 1»0, pix) > 0 if Ixl < 1. 

As for uo(x), we assume 

Uo(X)EC 1([ - 1, 1]), uo(x» 0, uo( ± 1) = o. 

(2.3) 

(2.4) 

(2.5) 

In this section we present some properties of the solu­
tion of (2.1 )-(2.3) which we use in the next section for the 
asymptotic analysis. 

We define first the weak solution for the problem (2.1)­
(2.3). 

Definition 1: A function I (x, t ) will be called a test func­
tion ifit has continuous derivativesfx./"Ixx in Q and 
I( ± 1, t) =0 IrJ t>O. 

Definition 2: The function u(x, t) defined in Q is a weak 
solution of (2.1 )-(2. 3) if 

(i) u is bounded, continuous, and non-negative in Q; 
(ii) the weak derivative aunlax exists, and for any test 

functionf(x, t) and any tl>O, t2>t" 

It'fl 
t, -I (put, + un Ixx) dx dt 

= f / (x)[f(x, t2)U(X, t2) - fix, ttlu(x, ttl] dx; 

(iii) u(x, t) satisfies the initial condition (2.3) 

(2.6) 

Theorem 2.1: Assume (2.4)-(2.5) to hold. Then the weak 
solution of the problem (2.1)-(2.3) exists and is unique. 

Theorem 2. I is proved in Ref. 19 for the case 
pix»~ Po> 0 for Ixl.;;; 1. For pix) satisfying 12.4), the unique­
nesss is proved along the same lines as in Ref. 19. The exis­
tence may also be proved in a similar way to the one pro­
posed in Ref. 19. We shall only outline it here. 

Let 

Qh,T= {(x, f): Ixl<h, O<f<TI, O<h<l, 
and consider the solution of (2.1) that satisfies the conditions 

u(x,O) = uo(x) + (1 - h) for Ixl<h, 

u( - h,t ) = uo( - h ) + 1 - h for t> 0, (2.7) 

u(h,t) = uolh ) + 1 - h for t> 0. 

Such solution exists and is denoted by u h (x, t). The function 
u h (x, t ) satisfies (2.1) in the classical sense. By the maximum 
principle 

1 - h<uhlx, t ).;;;M = maxluo(xll. (2.8) 

Moreover, for every T> 0, 

where M\ is a constant that does not depend on h. 
The last inequality may be obtained by multiplying Eq. 

(2.1) for Uh by a (u h jnlat and integrating it over the domain 

Qh.T· 
Let h---+l. It follows from (2.9) that the sequence of 

functions 
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is bounded in W~(Qb.T)forevery T>O, be(O, 1). Thus, by the 
imbedding theorems there exists the subsequence wh,(x, t) 

such thatwh,h t ) converges inL2( - b,b ) for all te[O, T]and 
all bE(O, 1). Moreover, we can extract wh, in such a way that 
wh,(x, t) converges a.e. in QI.T' The limit function, denote it 
by w(x, t), is defined in the whole QI.T' It follows from (2.8) 
and (2.9) that w(x, t) is bounded and continuous in QI.T' 

Set U = (W)II". Then Uh,(X, t ~u(x, t) a.e. in QI.T and for 
fixed tl and t2 we may extract the subsequence hi so that a.e. 
Uh,(X, td--+u(x, tk ) (k = 1,2). 

Letf(x, t) be some test function. We have for every 
tl>O, t2 > t l , 

f' f~ h [PUh /, + (Uh)" f xx] dx dt 

= fhP[f(x, t2)Uh (X, t2) -fIx, ( 1)Uh(X, tl)] dx 

+ {" af (u
h

)" dt Ih . 
J, ax --h 

(2.10) 

Passing to the limit as h--1 we obtain (2.6). 
Corollary 2.1: Let U I (x, t ) and u2(x, t ) be two solutions of 

Eq. (2.1) that satisfy the conditions 

UI(± 1,t)=u2(± 1,t)=0 

and 

ul(x, 0)<;U2(X, 0). 

Then u I(X, t )<;u2(x, t). 
Let 

Lz=(z")xx -pZt· (2.11) 
We show the following comparison principle. 

2- . 
Lemma2.1:Letz(x,t)EC (Qb.T),b< 1,z(x,t»OtnQb.T' 

Be u(x, t) the weak solution of the problem (2.1 H2.3) in QI.T' 
Then 

Lz>O in Qb.T' 

z( ± b, t ) = 0, O<t< T, 

o <z(x, O)<uo(x) for Ixl <b 

implies 

z(x, t )<u(x, t) in Qb.T' 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

For the proof we recall first that the solution u(x, t ) may 
be obtained as a limit of classical positive solutions. Thus it is 
enough to prove the assertion of Lemma 2.1 for the case that 
u(x, t) > 0 in Qb.T and satisfies (2.1) in the classical sense. We 
have 

u(±b,t»O=z(±b,t) O<t<T. (2.16) 

By continuity, the inequality (2.16) remains true for 
Ix I = b - E for E small enough. Therefore 

u[ ±(b-E),t]>Z[ ±(b-E),t]>O. (2.17) 

Next we compare u(x, t) and z(x, t) in Qb __ E.T' Following 
Refs. 19 and 17 we set U = u", Z = z". Then 

-P Ut +nU I -- III1Uxx =0 in Qb--E.T, 

-p Zt + nZI-I/IIZxx>O in Qb-EoT' 

Therefore, for W = U - Z we obtain 

n U III1WXX - P W t + n( U lin - Z 1I11)Zxx <0 

1387 

in Qb _ E.T' The last inequality may be written as 

a(x, t )w,u - WI + b (x, t )w<;O, (2.18) 

wherea(x, t ) and b (x, t ) are bounded in Qb _ E.T' By the classi­
cal maximum principle20 it follows from (2.18), (2.17), and 
(2.14) that 

w(x, t) = U - Z>O 

in Qb _ E.T· Therefore U>Z and 

u>z in Qb-E,T' (2.19) 

From (2.19) follows (2.15). Similarly, it may be proved that 
2 • -

Lemma2.2:Letz(x,t)EC (QI' T),z(x,t»OtnQI.Tand 
u(x, t) is a weak solution of (2.1H2.3). Then 

Lz<;O in QI.T' 

z(x,O»uo(x) for Ixl <; 1 

implies 

z(x, t »u(x, t) in QI.T' 
Remark 2.1: Lemma 2.1 is true if instead of Qb. Tone 

considers the domain Ix - xol <;b, 0 < t < T, where 
(xo - b, Xo + b)e( - 1, 1) and the condition (2.13) is 
changed to 

z(xo ± b, t ) = o. 
Set 

[cos(1f'/,)Q)(x x)] 1111 
z_(x, t; X o, a,{J) = a ~ - 0 , (2.20) 

(t+l)I/(,,-I) 

where xo, a, and {J are constants such that 
- 1 <xo - {J <xo + fJ < 1 and a will be chosen later. Using 
(2.11) we have 

Lz_ = _ a" (..!!.-)2 cos(1f'/2/J)(x - xo) 
2/J (t + 1)"/("-1) 

+~ [cos(1f'/2/J)(X_XO)]I/" (2.21) 
n - 1 (t + 1)"/(" - I) 

Set Po = min pIx) for Ix - Xo I <;{J and 

a
o 

= [ 4{32po ]II("-I}. 
(n _ l)r (2.22) 

It follows from (2.22) and (2.21) that for a<;ao, Lz_>O for 
XE(Xo - {J, Xo + {J) and t> O. The function z _ defined in 
(2.20) with a<;ao will be referred to as a subsolution ofEq. 
(2.1). Similarly, we set 

[cos I1f'X] lin 
Z (x t· a) = a -,,---,,-4---,,_ 

+ , , (t + 1)11(11-1) , 

PI = max/x/<I pIx) and 

a= 1 'h/2)l/n. [ 
16p ] 11(11 --I) 

(n-l)r 

Thenifa>a 

Lz+<.O for Ixl<.l, 1>0. 

(2.23) 

The function z + defined in (2.23) with a>a is a supersolution 
of(2.1). 

Theorem 1.1: Assume u(x, t ) is the weak solution of the 
problem (2.1H2.3) and (xo - r, Xo + rIC( - 1, 1). Suppose 
that 
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Uo(X»D for Ix -xol<y. 
Then there exist two constants Mo and mo such that 

u(x,t),;;; Mo fort>O,lxl<l, (2.24) 
(t+ 1)1/(n-l) 

m 
u(x, t» 0 

(t + 1)1/ln - II 
for t> 0, Ix - xol,;;; L. (2.25) 

2 

The proof of (2.24) follows applying Lemma 2.2 and using 
the function z+(x, t; a) with a large enough a. The proof of 
(2.25) follows from Lemma 2.1 and Remark 2.1 using 
z_(x, t; xo' a, y) with a small enough a. 

Next we set 

() 
v*(x, t) u x, t = -----'---'----'---

(t + 1)l/ln - II 
(2.26) 

If u(x, t) is the classical solution of (2.1) then v*(x, t) satisfies 
the equation 

av* a2(v*t 1 
p(x)(t+ 1)-=--+--pv*. at ax2 n - 1 

Introducing the new variable 

r = In(t + 1) 

and denoting 

v(x, r) = v*(x, t), (2.27) 

we obtain the equation for v(x, r), 

av a2vn 1 
pix) - = - + --pv. 

ar ax2 n - 1 
(2.28) 

In the general case v(x, r) satisfies the integral identity 

IT'II [pv f T 
+ vnfxx + _1_PVf) dx dr 

T, -I n - 1 

= f /(x)[f(x, rz)v(x, r2) -fix, rl)v(x, r l )] dx (2.29) 

for any test functionf(x, r). The integral identity (2.29) is 
easily obtained from (2.6) substituting (2.26) and (2.27). From 
the definition of v(x, r) and Theorem 2.2 follows 

Theorem 2.3: For v(x, r) defined by (2.26), (2.27), and 
under the assumptions of Theorem 2.2, 

v(x, r),;;;Mo for Ixl';;;l, r>O, 

v(x, r»mo for Ix - xol <! y, 7> 0. 
We shall need also the following estimates. 

(2.30) 

(2.31) 

Lemma 2.3: Let u(x, t) be the solution of(2.1)-(2.3) and 
v(x, 7) defined in (2.26) and (2.27). Then there exist the weak 
derivative avln + 1112/ar and, for every fixed r, the weak deri­
vative avn/ax. Moreover, 

i T II ( av ln + 1)/2 )2 
pix) dx dr<M2' 

o -I aT 
(2.32) 

II (aVn)2 \ - dx ,;;;M2 , 

- I ax T= T 

(2.33) 

where M2 is some constant depending only on uo(x). 
We prove first (2.32) and (2.33) for v = Vh ' where 

vh(x, r) = vt(x, t) = Uh(X, t).(1 + t)l/In-II, 

where U h is defined as in the proof of Theorem 2.1. To prove 
the integral estimates for Vk we multiply Eq. (2.28) by 
a (v h )"/ aT and integrate it over Qh, T' Integrating by parts and 
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using (2.30) we get 

Ii ( a(Uh )In + I)/Z )2 
PIX) dx dt,;;;M1, 

Qh,T aT 

fh (a(Uh )")Z I -- dx <M2• 
-h ax r= T 

Passing to the limit as h-+l we get the assertion of the 
lemma. 

3. ASYMPTOTIC ANALYSIS 

Suppose that the assumption onp(x) and uo(x} stated in 
the beginning of Sec. 2 hold, 

Theorem 3.1: The solution of the problem 

(vT' + [l/(n-l)]p(x)v=O, Ixl<l, (3.1) 

v( - I) = v( 1) = 0, 

v(x»O, u(x)=;t=O, Ix I,;;; 1 

.is unique. 

(3,2) 

(3,3) 

Theorem 3.2: The nontrivial solution vtlx) of the prob­
lem (3.1)-(3.3) exists. 

Theorem 3.3: Let u(x, t ) be the weak solution of the 
problem (2.1 }-(2.3) and vo(x) the solution of (3, 1)-(3.2). Then 

t I/ln-l)u(x, t)-+vl(x) ift-+oo 

uniformly for Ix I,;;; 1. 
Proof of Theorem 3.1: Suppose there exist two solutions 

of (3, 1 )-(3.3), vl(x) and v1(x}. By the maximum principle 

ul(x} > 0, vz(x} > 0 for Ixl < 1. (3.4) 

Moreover, 

_I ¥O, _z ¥O. dun I dun I 
dx x= ± I dx x= ± I 

(3,5) 

It follows from (3.4) and (3.5) that there exist a I> a z such 
that 

or 

(3.6) 

Set 

() UI{X) -( t) _ vz(x) u x t - ux, - , 
I' - (t + 5t1l1ln - I) , (t + l)lIln - I) 

u(x t)- Vl(x) 
2' - (t+5i/ln - l) 

ThefunctionsUIIX, t), U(X, t), and u2(x, t) are the solutions of 
Eq, (2.1) for every 51> 0 and 52 > 0, Be 51 = a~ - n, 

5z = a~ - n. Then by (3.6) we have 

ul(x, O)';;;u(x, O)<uz(x, 0). 

Applying Corollary 2.1 we obtain 

ul(x, t)<u(x, t)<U2(X, t) 

or 

(
1+ 1 )lIln -1) (I + 1 )lIln -I) 

vl(x) -- ,;;; VZ(x),;;;v l (x) -- . 
t+51 1+5z 

Passing to the limit as 1-+00 we get UI(X)=VZ(x). 

(3.7) 

Lemma 3.1: Let v(x, r) be defined by (2.26) and (2.27). 
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Assume that v(x, 0) = u(x, O):¢;O. Then there exists a se­
quence (1'; I, 1'r-+oo such that the sequence offunctions 
v(x, 1';) ( - 1 <;x <; 1) converges uniformly to the limit function 
v\(x). Moreover, 

(3.8) 

The prooffollows from (2.33) and (2.31). 
Lemma 3.2: Let v(x, 1';) be the sequence defined in 

Lemma 3.1 and 

(3.9) 

Then v\(x) is the solution of the problem (3.1)-(3.3). 
Proof: Let g = {Ix, r}, Ixl <; 1, 11'1 <; Ij. We prove first 

that 

Ilv(" + l)I2(X, l' + 1';) - v\" + l)I2(x)lk (9))-0 (3.10) 

as 1'i---+oo. Let e be some arbitrary, small number. By (2.33) 
there exists b = b (e) such that 

0<;V(x,7)<e, for7>0, b<lxl<l (3.11) 

and 

O<vl(x)<e for b<lxl<;l. (3.12) 

Next we choose T = T(e) large enough so that 

i T, + I Jb [av(n + 1)12 )2 
T, -b a7 

dx d1'<e for 1'i>T. (3.13) 

Such T exists because of (2.32). It follows from (3.13) that 

J~ b Ivln + 1)I2/X , r i + r} - v ln + 1)/2/X , 7i W dx<e /3.14} 

forri>T andallTE[O, 1]. We conclude from (3.9) and (3.14) 
that for r i large enough and rElO, 1] 

J~ b Ivl" + 1)12(X, 1'i + 7) - v\n + 1)12(XW dx<2e. (3.15) 

From {3.15}, (3.11), and (3.12) we obtain that for 1',. large 
enough and all TE[O, 1] 

F 1 Ivln + 11/2(X, 1',. + 1') - v\n + 1)I2(XW dx<;e(2 + '112). 

(3.16) 

Hence (3.10) is proved. 
Next we conclude from (3.16) and (3.10) that there exists 

a subsequence of 7i such that 

v(n + 1112(X, 1',. + r)---+vlln + 1)l2(X) a.e. in g, (3.17) 

vln + 1112(X, 7i + 1 )---+v\n + 1)/2(X) a.e. for Ix 1< 1. (3.18) 

if r i ---+ 00. We use the same notation for this subsequence. 
From (3.17) and (3.18) we have 

v(x, 7 + 7;)---+Vl(X) a.e. in g, 

Vn(X, 7 + 1',. )---+v7 (x) a.e. in g, 

V(X,7i + l)-Vl(X) a.e. for Ixl<l. 

(3.19) 

(3.20) 

(3.21) 

Letf(x) be some test function depending only on x. 
Using (2.29) we have 

r /(x)f(x)[v(x, 7i + 1) - v(x, 7i l] dx 
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[ ,+1 fl [ 1 ] = vn(x, 1')[W + --=-pv(x, 1')[ dx dr. 
r, -1 n 1 

(3.22) 

It follows from (3.19)-(3.21), (2.30), and (3.9) that we can pass 
to the limit as 1';---+00 in (3.22). We obtain 

[ ,+Ifl [ 1 J (vd"f" +--pv.i dxdt=O. 
T, -I n - 1 

Therefore, 

II (v7 f" + _1_pv.i) dx = O. 
-I n - 1 

The last equality holds for every test function; thus v\lx) is a 
weak solution ofEq. (3.1). From the continuity ofv\(x) it 
follows that y(x) = v7 (x) is the unique classical solution of the 
problem 

y" = - [l/(n - 1)] p(x)v\(x), 

y( ± 1) = o. 
Therefore v\(x) is the classical solution of(3.1). Theorem 3.2 
is thus proved. 

By Theorem 3.1, v\(x) is the unique solution of(3.1)­
(3.3) and thus the whole sequence v(x, 1') converges to v\(x) as 
7---+00 . 

Returning to the definition ofv(x, 1') by (2.26) and (2.27) 
we obtain the assertion of Theorem 3.3 

Remarks: 1. Theorem 3.3 may be also proved using a 
decreasing Liapunov functional (for a good survey and cor­
responding references see Ref. 21). Such an approach is equi­
valent to the one used in our work. 

2. Note that via the study of the asymptotic behavior of 
the nonstationary problem, as a by-product we have ob­
tained the existence of the solution of the eigenvalue problem 
13.1), (3.2). In Ref. 17 the existence of the relevant eigenvalue 
problem is a consequence of a theorem by Amann.22 This 
theorem is nonapplicable in our case becausep(x) may vanish 
on the boundary. 

4. FINAL REMARKS 

Consider the problem 

av a2vn 1 
pix) at = ax2 + n _ 1 p(x)v, 

v(x, 0) = vo(x), 

v( ± 1, t) = o. 

(4.1) 

(4.2) 

(4.3) 

A weak solution of (4.1)-(4.3) can be defined by translating 
directly the definition of the weak solution of the problem 
(2.1 )-(2.3). Similarly, as a consequence of Theorems (3.1)­
(3.3) we obtain, if v(x, t) is a solution of (4.1)-(4.3), then 

vlx, t )---+v\lx) as t---+oo 

and v\(x) is the unique stationary solution of the Eq. (4.1). 
Note that the functions 

(4.4) 

and 

(4.5) 
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are the appropriate super and subsolutions for (4.1). 
The method we have presented may be used to study the 

stabilization of the solution of the equation 

iJv iJ2vn 

pix) at = ax2 + PI (x)u' (4.6) 

withpl(x) satisfying the same conditions asp(x) [see (2.3) and 
(2.4)] and 1 <s < n. Theorems (3.1) and (3.2) provide the exis­
tence and the uniqueness ofthe stationary solution of (4.6). 
The functions defined in (4.4) and (4.5) may be used here as 
super and subsolutions. 
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